CAT(0)立方配合物等距的中位数集及其应用

A. Genevois
{"title":"CAT(0)立方配合物等距的中位数集及其应用","authors":"A. Genevois","doi":"10.1307/MMJ/20195823","DOIUrl":null,"url":null,"abstract":"In this article, we associate to isometries of CAT(0) cube complexes specific subspaces, referred to as \\emph{median sets}, which play a similar role as minimising sets of semisimple isometries in CAT(0) spaces. Various applications are deduced, including a cubulation of centralisers, a splitting theorem, a proof that Dehn twists in mapping class groups must be elliptic for every action on a CAT(0) cube complex, a cubical version of the flat torus theorem, and a structural theorem about polycyclic groups acting on CAT(0) cube complexes.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"68 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Median Sets of Isometries in CAT(0) Cube Complexes and Some Applications\",\"authors\":\"A. Genevois\",\"doi\":\"10.1307/MMJ/20195823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we associate to isometries of CAT(0) cube complexes specific subspaces, referred to as \\\\emph{median sets}, which play a similar role as minimising sets of semisimple isometries in CAT(0) spaces. Various applications are deduced, including a cubulation of centralisers, a splitting theorem, a proof that Dehn twists in mapping class groups must be elliptic for every action on a CAT(0) cube complex, a cubical version of the flat torus theorem, and a structural theorem about polycyclic groups acting on CAT(0) cube complexes.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"68 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1307/MMJ/20195823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1307/MMJ/20195823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们将CAT(0)立方体复合体的等距与特定子空间联系起来,称为\emph{中位数集},它与CAT(0)空间中半简单等距的最小化集起着类似的作用。本文推导了该理论的各种应用,包括中心化器的计算、分裂定理、映射类群中的Dehn扭曲对CAT(0)立方复形的每一个作用都必须是椭圆的证明、平环面定理的一个立方版本,以及关于作用于CAT(0)立方复形的多环群的一个结构定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Median Sets of Isometries in CAT(0) Cube Complexes and Some Applications
In this article, we associate to isometries of CAT(0) cube complexes specific subspaces, referred to as \emph{median sets}, which play a similar role as minimising sets of semisimple isometries in CAT(0) spaces. Various applications are deduced, including a cubulation of centralisers, a splitting theorem, a proof that Dehn twists in mapping class groups must be elliptic for every action on a CAT(0) cube complex, a cubical version of the flat torus theorem, and a structural theorem about polycyclic groups acting on CAT(0) cube complexes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信