基于灵敏度的大型三维DC/IP勘探数据简化

Sarah G. R. Devriese, R. Ellis, K. Witherly
{"title":"基于灵敏度的大型三维DC/IP勘探数据简化","authors":"Sarah G. R. Devriese, R. Ellis, K. Witherly","doi":"10.1080/22020586.2019.12073229","DOIUrl":null,"url":null,"abstract":"Summary In this paper, we present an algorithm based on the sensitivity of the data to the model space to reduce the large amount of data commonly collected during 3D DC/IP surveys to only those most relevant and important to the model space. The sensitivity-based data reduction (SBDR) algorithm is demonstrated using both synthetic and field data examples. The results indicate that the SBDR recovered models are valid solutions to the full inversion problem but require a fraction of the computation time and resources, providing a geologic solution in a much shorter time than required to solve the full inversion problem.","PeriodicalId":8502,"journal":{"name":"ASEG Extended Abstracts","volume":"77 1","pages":"1 - 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity-based data reduction of large 3D DC/IP surveys\",\"authors\":\"Sarah G. R. Devriese, R. Ellis, K. Witherly\",\"doi\":\"10.1080/22020586.2019.12073229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In this paper, we present an algorithm based on the sensitivity of the data to the model space to reduce the large amount of data commonly collected during 3D DC/IP surveys to only those most relevant and important to the model space. The sensitivity-based data reduction (SBDR) algorithm is demonstrated using both synthetic and field data examples. The results indicate that the SBDR recovered models are valid solutions to the full inversion problem but require a fraction of the computation time and resources, providing a geologic solution in a much shorter time than required to solve the full inversion problem.\",\"PeriodicalId\":8502,\"journal\":{\"name\":\"ASEG Extended Abstracts\",\"volume\":\"77 1\",\"pages\":\"1 - 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEG Extended Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/22020586.2019.12073229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEG Extended Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22020586.2019.12073229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种基于数据对模型空间敏感性的算法,将3D DC/IP调查中通常收集的大量数据减少到与模型空间最相关和最重要的数据。基于灵敏度的数据约简(SBDR)算法通过综合和现场数据实例进行了验证。结果表明,SBDR恢复模型是解决全反演问题的有效方法,但只需要一小部分计算时间和资源,比解决全反演问题所需的时间短得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity-based data reduction of large 3D DC/IP surveys
Summary In this paper, we present an algorithm based on the sensitivity of the data to the model space to reduce the large amount of data commonly collected during 3D DC/IP surveys to only those most relevant and important to the model space. The sensitivity-based data reduction (SBDR) algorithm is demonstrated using both synthetic and field data examples. The results indicate that the SBDR recovered models are valid solutions to the full inversion problem but require a fraction of the computation time and resources, providing a geologic solution in a much shorter time than required to solve the full inversion problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信