N. Soboleva, A. Makarov, P. Skorynina, E. Nikolaeva, I. Malygina
{"title":"DBN压头摩擦处理过程中载荷对NiCrBSi-Cr3C2激光熔覆层表面光洁度的影响","authors":"N. Soboleva, A. Makarov, P. Skorynina, E. Nikolaeva, I. Malygina","doi":"10.1063/1.5132212","DOIUrl":null,"url":null,"abstract":"The authors consider the hardness and surface finish of the composite NiCrBSi–Cr3C2 laser clad coating after frictional treatment with a dense cubic boron nitride (DBN) indenter in air at loads on the indenter of 350, 500 and 700 N in comparison with the surface characteristics after grinding. Frictional treatment in all cases leads to surface hardening. Frictional treatment at loads of 350–500 N ensures the formation of surfaces with the lowest roughness parameters and contributes to the preservation on the surface of large hard chromium carbides, while frictional treatment at a load of 700 N causes the destruction of Cr3C2 carbides on the surface of the coating.The authors consider the hardness and surface finish of the composite NiCrBSi–Cr3C2 laser clad coating after frictional treatment with a dense cubic boron nitride (DBN) indenter in air at loads on the indenter of 350, 500 and 700 N in comparison with the surface characteristics after grinding. Frictional treatment in all cases leads to surface hardening. Frictional treatment at loads of 350–500 N ensures the formation of surfaces with the lowest roughness parameters and contributes to the preservation on the surface of large hard chromium carbides, while frictional treatment at a load of 700 N causes the destruction of Cr3C2 carbides on the surface of the coating.","PeriodicalId":20637,"journal":{"name":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effect of load during frictional treatment with a DBN indenter on the surface finish of the NiCrBSi–Cr3C2 laser clad coating\",\"authors\":\"N. Soboleva, A. Makarov, P. Skorynina, E. Nikolaeva, I. Malygina\",\"doi\":\"10.1063/1.5132212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors consider the hardness and surface finish of the composite NiCrBSi–Cr3C2 laser clad coating after frictional treatment with a dense cubic boron nitride (DBN) indenter in air at loads on the indenter of 350, 500 and 700 N in comparison with the surface characteristics after grinding. Frictional treatment in all cases leads to surface hardening. Frictional treatment at loads of 350–500 N ensures the formation of surfaces with the lowest roughness parameters and contributes to the preservation on the surface of large hard chromium carbides, while frictional treatment at a load of 700 N causes the destruction of Cr3C2 carbides on the surface of the coating.The authors consider the hardness and surface finish of the composite NiCrBSi–Cr3C2 laser clad coating after frictional treatment with a dense cubic boron nitride (DBN) indenter in air at loads on the indenter of 350, 500 and 700 N in comparison with the surface characteristics after grinding. Frictional treatment in all cases leads to surface hardening. Frictional treatment at loads of 350–500 N ensures the formation of surfaces with the lowest roughness parameters and contributes to the preservation on the surface of large hard chromium carbides, while frictional treatment at a load of 700 N causes the destruction of Cr3C2 carbides on the surface of the coating.\",\"PeriodicalId\":20637,\"journal\":{\"name\":\"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5132212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5132212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effect of load during frictional treatment with a DBN indenter on the surface finish of the NiCrBSi–Cr3C2 laser clad coating
The authors consider the hardness and surface finish of the composite NiCrBSi–Cr3C2 laser clad coating after frictional treatment with a dense cubic boron nitride (DBN) indenter in air at loads on the indenter of 350, 500 and 700 N in comparison with the surface characteristics after grinding. Frictional treatment in all cases leads to surface hardening. Frictional treatment at loads of 350–500 N ensures the formation of surfaces with the lowest roughness parameters and contributes to the preservation on the surface of large hard chromium carbides, while frictional treatment at a load of 700 N causes the destruction of Cr3C2 carbides on the surface of the coating.The authors consider the hardness and surface finish of the composite NiCrBSi–Cr3C2 laser clad coating after frictional treatment with a dense cubic boron nitride (DBN) indenter in air at loads on the indenter of 350, 500 and 700 N in comparison with the surface characteristics after grinding. Frictional treatment in all cases leads to surface hardening. Frictional treatment at loads of 350–500 N ensures the formation of surfaces with the lowest roughness parameters and contributes to the preservation on the surface of large hard chromium carbides, while frictional treatment at a load of 700 N causes the destruction of Cr3C2 carbides on the surface of the coating.