气钻技术中底孔组件的轴向-扭转非线性振动

IF 4.2 Q2 ENERGY & FUELS
{"title":"气钻技术中底孔组件的轴向-扭转非线性振动","authors":"","doi":"10.1016/j.petlm.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>The safety and efficiency of drilling engineering are greatly impeded by destructive vibrations of drill string in air drilling, such as stick-slip, bit-bounce and their coupled vibrations. To avoid or suppress these vibrations improving the stability of drilling operations, revealing the occurrence mechanisms of abovementioned harmful vibrations are indispensable by investigating dynamics characteristics of drill string system. In this paper, an axial-torsional coupled dynamics model that can capture the motion behaviors of bottom hole assembly (BHA) is established adopting the lumped parameter method. Subsequently, a rate of penetration (ROP) model appropriating for air drilling is obtained firstly by linear fitting means. Meanwhile, a novel discontinuous support model is established to describe the bit-formation interactions. Then, BHA dynamics are discussed using numerical simulations under different vibration scenarios: normal operation; stick-slip; bit-bounce; bit-bounce and stick-slip combination. Subsequently, in two drilling modes: the continuous and intermittent drilling, the vibration mitigation strategies and dynamics sensibility study of BHA are carried out based on the parametric analysis. The results show that increasing torsional stiffness of drill-pipes, appropriately adjusting rotation speed of top driven system and dynamic weight on bit (WOB) are deemed as an effective strategy suppressing or eliminating stick-slip and bit-bounce vibrations of BHA. Suggest that the rotation speed of top driven system and dynamic WOB are 5 rad/s and 3.5 kN, respectively. Finally, the constructed probability maps allow to driller to choose reasonable mechanical parameters, thereby realizing smooth drilling operation in the air drilling.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000317/pdfft?md5=4b1ac94bc4e6d01b29e4229647ecdc56&pid=1-s2.0-S2405656123000317-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Axial-torsional nonlinear vibration of bottom hole assembly in the air drilling technology\",\"authors\":\"\",\"doi\":\"10.1016/j.petlm.2023.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The safety and efficiency of drilling engineering are greatly impeded by destructive vibrations of drill string in air drilling, such as stick-slip, bit-bounce and their coupled vibrations. To avoid or suppress these vibrations improving the stability of drilling operations, revealing the occurrence mechanisms of abovementioned harmful vibrations are indispensable by investigating dynamics characteristics of drill string system. In this paper, an axial-torsional coupled dynamics model that can capture the motion behaviors of bottom hole assembly (BHA) is established adopting the lumped parameter method. Subsequently, a rate of penetration (ROP) model appropriating for air drilling is obtained firstly by linear fitting means. Meanwhile, a novel discontinuous support model is established to describe the bit-formation interactions. Then, BHA dynamics are discussed using numerical simulations under different vibration scenarios: normal operation; stick-slip; bit-bounce; bit-bounce and stick-slip combination. Subsequently, in two drilling modes: the continuous and intermittent drilling, the vibration mitigation strategies and dynamics sensibility study of BHA are carried out based on the parametric analysis. The results show that increasing torsional stiffness of drill-pipes, appropriately adjusting rotation speed of top driven system and dynamic weight on bit (WOB) are deemed as an effective strategy suppressing or eliminating stick-slip and bit-bounce vibrations of BHA. Suggest that the rotation speed of top driven system and dynamic WOB are 5 rad/s and 3.5 kN, respectively. Finally, the constructed probability maps allow to driller to choose reasonable mechanical parameters, thereby realizing smooth drilling operation in the air drilling.</p></div>\",\"PeriodicalId\":37433,\"journal\":{\"name\":\"Petroleum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405656123000317/pdfft?md5=4b1ac94bc4e6d01b29e4229647ecdc56&pid=1-s2.0-S2405656123000317-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405656123000317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656123000317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

空气钻井中钻杆的破坏性振动,如粘滑、钻头弹跳及其耦合振动,极大地影响了钻井工程的安全和效率。为了避免或抑制这些振动,提高钻井作业的稳定性,必须通过研究钻杆系统的动力学特性来揭示上述有害振动的发生机理。本文采用集合参数法建立了一个能捕捉底孔组件(BHA)运动行为的轴向-扭转耦合动力学模型。随后,首先通过线性拟合方法得到了适合空气钻井的钻进速度(ROP)模型。同时,建立了一个新颖的非连续支撑模型来描述钻头与变形之间的相互作用。然后,通过数值模拟讨论了不同振动情况下的 BHA 动态:正常工作;粘滑;钻头反弹;钻头反弹和粘滑组合。随后,在连续钻进和间歇钻进两种钻进模式下,基于参数分析对 BHA 的振动缓解策略和动力学敏感性进行了研究。结果表明,增加钻杆扭转刚度、适当调整顶部驱动系统转速和动态钻头重量(WOB)被认为是抑制或消除 BHA 粘滑和钻头反弹振动的有效策略。建议顶部驱动系统的转速和动态 WOB 分别为 5 rad/s 和 3.5 kN。最后,通过所构建的概率图,钻井人员可以选择合理的机械参数,从而在空气钻井中实现平稳的钻进操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axial-torsional nonlinear vibration of bottom hole assembly in the air drilling technology

The safety and efficiency of drilling engineering are greatly impeded by destructive vibrations of drill string in air drilling, such as stick-slip, bit-bounce and their coupled vibrations. To avoid or suppress these vibrations improving the stability of drilling operations, revealing the occurrence mechanisms of abovementioned harmful vibrations are indispensable by investigating dynamics characteristics of drill string system. In this paper, an axial-torsional coupled dynamics model that can capture the motion behaviors of bottom hole assembly (BHA) is established adopting the lumped parameter method. Subsequently, a rate of penetration (ROP) model appropriating for air drilling is obtained firstly by linear fitting means. Meanwhile, a novel discontinuous support model is established to describe the bit-formation interactions. Then, BHA dynamics are discussed using numerical simulations under different vibration scenarios: normal operation; stick-slip; bit-bounce; bit-bounce and stick-slip combination. Subsequently, in two drilling modes: the continuous and intermittent drilling, the vibration mitigation strategies and dynamics sensibility study of BHA are carried out based on the parametric analysis. The results show that increasing torsional stiffness of drill-pipes, appropriately adjusting rotation speed of top driven system and dynamic weight on bit (WOB) are deemed as an effective strategy suppressing or eliminating stick-slip and bit-bounce vibrations of BHA. Suggest that the rotation speed of top driven system and dynamic WOB are 5 rad/s and 3.5 kN, respectively. Finally, the constructed probability maps allow to driller to choose reasonable mechanical parameters, thereby realizing smooth drilling operation in the air drilling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum
Petroleum Earth and Planetary Sciences-Geology
CiteScore
9.20
自引率
0.00%
发文量
76
审稿时长
124 days
期刊介绍: Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信