小波支持向量删节回归

M. Maia, J. S. Pimentel, R. Ospina, Anderson Ara
{"title":"小波支持向量删节回归","authors":"M. Maia, J. S. Pimentel, R. Ospina, Anderson Ara","doi":"10.3390/analytics2020023","DOIUrl":null,"url":null,"abstract":"Learning methods in survival analysis have the ability to handle censored observations. The Cox model is a predictive prevalent statistical technique for survival analysis, but its use rests on the strong assumption of hazard proportionality, which can be challenging to verify, particularly when working with non-linearity and high-dimensional data. Therefore, it may be necessary to consider a more flexible and generalizable approach, such as support vector machines. This paper aims to propose a new method, namely wavelet support vector censored regression, and compare the Cox model with traditional support vector regression and traditional support vector regression for censored data models, survival models based on support vector machines. In addition, to evaluate the effectiveness of different kernel functions in the support vector censored regression approach to survival data, we conducted a series of simulations with varying number of observations and ratios of censored data. Based on the simulation results, we found that the wavelet support vector censored regression outperformed the other methods in terms of the C-index. The evaluation was performed on simulations, survival benchmarking datasets and in a biomedical real application.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet Support Vector Censored Regression\",\"authors\":\"M. Maia, J. S. Pimentel, R. Ospina, Anderson Ara\",\"doi\":\"10.3390/analytics2020023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning methods in survival analysis have the ability to handle censored observations. The Cox model is a predictive prevalent statistical technique for survival analysis, but its use rests on the strong assumption of hazard proportionality, which can be challenging to verify, particularly when working with non-linearity and high-dimensional data. Therefore, it may be necessary to consider a more flexible and generalizable approach, such as support vector machines. This paper aims to propose a new method, namely wavelet support vector censored regression, and compare the Cox model with traditional support vector regression and traditional support vector regression for censored data models, survival models based on support vector machines. In addition, to evaluate the effectiveness of different kernel functions in the support vector censored regression approach to survival data, we conducted a series of simulations with varying number of observations and ratios of censored data. Based on the simulation results, we found that the wavelet support vector censored regression outperformed the other methods in terms of the C-index. The evaluation was performed on simulations, survival benchmarking datasets and in a biomedical real application.\",\"PeriodicalId\":93078,\"journal\":{\"name\":\"Big data analytics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big data analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/analytics2020023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big data analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics2020023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生存分析中的学习方法具有处理删减观察的能力。Cox模型是一种预测生存分析的流行统计技术,但它的使用依赖于对风险比例的强烈假设,这可能很难验证,特别是在处理非线性和高维数据时。因此,可能有必要考虑一种更灵活和可推广的方法,例如支持向量机。本文旨在提出一种新的方法,即小波支持向量删减回归,并将Cox模型与传统支持向量回归和传统支持向量回归的删减数据模型、基于支持向量机的生存模型进行比较。此外,为了评估不同核函数在支持向量审查回归方法中对生存数据的有效性,我们进行了一系列具有不同观测数量和审查数据比率的模拟。基于仿真结果,我们发现小波支持向量截除回归在c指数方面优于其他方法。评估是在模拟、生存基准数据集和生物医学实际应用中进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet Support Vector Censored Regression
Learning methods in survival analysis have the ability to handle censored observations. The Cox model is a predictive prevalent statistical technique for survival analysis, but its use rests on the strong assumption of hazard proportionality, which can be challenging to verify, particularly when working with non-linearity and high-dimensional data. Therefore, it may be necessary to consider a more flexible and generalizable approach, such as support vector machines. This paper aims to propose a new method, namely wavelet support vector censored regression, and compare the Cox model with traditional support vector regression and traditional support vector regression for censored data models, survival models based on support vector machines. In addition, to evaluate the effectiveness of different kernel functions in the support vector censored regression approach to survival data, we conducted a series of simulations with varying number of observations and ratios of censored data. Based on the simulation results, we found that the wavelet support vector censored regression outperformed the other methods in terms of the C-index. The evaluation was performed on simulations, survival benchmarking datasets and in a biomedical real application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信