{"title":"非交换场论中的离散化","authors":"C. Acatrinei","doi":"10.7546/giq-20-2019-65-78","DOIUrl":null,"url":null,"abstract":"A discretization scheme provided by the noncommutativity of space is reviewed. In the representation chosen here the radial coordinate is rendered discrete, allowing fields to be put on a lattice in a natural way. Noncommutativity is traded for a controllable type of nonlocality of the field dynamics, which in turn allows fermions to be free of lattice artefacts. Exact, singularity-free solutions are found interpreted, and their continuum limit is well-defined. MSC : 33E20, 39A12, 33C80, 33C45, 05A10","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discretization in Noncommutative Field Theory\",\"authors\":\"C. Acatrinei\",\"doi\":\"10.7546/giq-20-2019-65-78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A discretization scheme provided by the noncommutativity of space is reviewed. In the representation chosen here the radial coordinate is rendered discrete, allowing fields to be put on a lattice in a natural way. Noncommutativity is traded for a controllable type of nonlocality of the field dynamics, which in turn allows fermions to be free of lattice artefacts. Exact, singularity-free solutions are found interpreted, and their continuum limit is well-defined. MSC : 33E20, 39A12, 33C80, 33C45, 05A10\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/giq-20-2019-65-78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-20-2019-65-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
A discretization scheme provided by the noncommutativity of space is reviewed. In the representation chosen here the radial coordinate is rendered discrete, allowing fields to be put on a lattice in a natural way. Noncommutativity is traded for a controllable type of nonlocality of the field dynamics, which in turn allows fermions to be free of lattice artefacts. Exact, singularity-free solutions are found interpreted, and their continuum limit is well-defined. MSC : 33E20, 39A12, 33C80, 33C45, 05A10