基于avn的QC LDPC码鞣制图短周期消除

I. Bocharova, B. Kudryashov, Vitaly Skachek
{"title":"基于avn的QC LDPC码鞣制图短周期消除","authors":"I. Bocharova, B. Kudryashov, Vitaly Skachek","doi":"10.1109/ISIT.2019.8849632","DOIUrl":null,"url":null,"abstract":"One of the most efficient approaches to improving the frame error rate (FER) performance of low-density parity-check (LDPC) codes is based on adding both auxiliary variable nodes (AVN) and the corresponding redundant parity checks (RPC) to the binary parity-check matrices of the code. It is known that for the LDPC codes, whose Tanner graphs contain length four cycles, this technique allows for substantial improvement in the FER performance of the belief-propagation (BP) decoding on the binary erasure channel (BEC) channel. The AVN-based technique followed by adding orthogonal redundant parity-checks is known to be efficient for both the BEC and additive white Gaussian noise (AWGN) channels. In this paper, firstly, the AVN-based approach is generalized to efficiently removing cycles of length larger than four. Secondly, the AVN-based technique is reformulated in terms of labeled base matrices of quasi-cyclic (QC) LDPC codes. An improved iterative decoding of QC LDPC codes is proposed, which is applied to the labeled base matrices of QC LDPC codes extended by the AVN-RPC technique.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"38 1","pages":"56-60"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AVN-based Elimination of Short Cycles in Tanner Graphs of QC LDPC Codes\",\"authors\":\"I. Bocharova, B. Kudryashov, Vitaly Skachek\",\"doi\":\"10.1109/ISIT.2019.8849632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most efficient approaches to improving the frame error rate (FER) performance of low-density parity-check (LDPC) codes is based on adding both auxiliary variable nodes (AVN) and the corresponding redundant parity checks (RPC) to the binary parity-check matrices of the code. It is known that for the LDPC codes, whose Tanner graphs contain length four cycles, this technique allows for substantial improvement in the FER performance of the belief-propagation (BP) decoding on the binary erasure channel (BEC) channel. The AVN-based technique followed by adding orthogonal redundant parity-checks is known to be efficient for both the BEC and additive white Gaussian noise (AWGN) channels. In this paper, firstly, the AVN-based approach is generalized to efficiently removing cycles of length larger than four. Secondly, the AVN-based technique is reformulated in terms of labeled base matrices of quasi-cyclic (QC) LDPC codes. An improved iterative decoding of QC LDPC codes is proposed, which is applied to the labeled base matrices of QC LDPC codes extended by the AVN-RPC technique.\",\"PeriodicalId\":6708,\"journal\":{\"name\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"38 1\",\"pages\":\"56-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2019.8849632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提高低密度奇偶校验(LDPC)码的帧错误率(FER)性能的最有效方法之一是在码的二进制奇偶校验矩阵中添加辅助变量节点(AVN)和相应的冗余奇偶校验(RPC)。众所周知,对于Tanner图包含长度为4个周期的LDPC码,该技术允许在二进制擦除信道(BEC)信道上的信念传播(BP)解码的FER性能得到实质性改善。基于avn的技术,然后加上正交冗余奇偶校验,对于BEC和加性高斯白噪声(AWGN)信道都是有效的。本文首先将基于avn的方法推广到有效去除长度大于4的循环。其次,用拟循环LDPC码的标记基矩阵对基于avn的方法进行了重新表述。提出了一种改进的QC LDPC码迭代译码方法,并将其应用于AVN-RPC技术扩展的QC LDPC码的标记基矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AVN-based Elimination of Short Cycles in Tanner Graphs of QC LDPC Codes
One of the most efficient approaches to improving the frame error rate (FER) performance of low-density parity-check (LDPC) codes is based on adding both auxiliary variable nodes (AVN) and the corresponding redundant parity checks (RPC) to the binary parity-check matrices of the code. It is known that for the LDPC codes, whose Tanner graphs contain length four cycles, this technique allows for substantial improvement in the FER performance of the belief-propagation (BP) decoding on the binary erasure channel (BEC) channel. The AVN-based technique followed by adding orthogonal redundant parity-checks is known to be efficient for both the BEC and additive white Gaussian noise (AWGN) channels. In this paper, firstly, the AVN-based approach is generalized to efficiently removing cycles of length larger than four. Secondly, the AVN-based technique is reformulated in terms of labeled base matrices of quasi-cyclic (QC) LDPC codes. An improved iterative decoding of QC LDPC codes is proposed, which is applied to the labeled base matrices of QC LDPC codes extended by the AVN-RPC technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信