太阳能跟踪器的机器学习

J. Carballo, J. Bonilla, M. Berenguel, J. Fernández-Reche, Ginés García
{"title":"太阳能跟踪器的机器学习","authors":"J. Carballo, J. Bonilla, M. Berenguel, J. Fernández-Reche, Ginés García","doi":"10.1063/1.5117524","DOIUrl":null,"url":null,"abstract":"A new approach for solar tracking, based on deep learning techniques, is being studied and tested using Tensorflow, an open source machine learning framework. Tensorflow makes the implementation more flexible and increases the development capabilities. Tensorflow facilitates the neural network implementation on several kinds of devices (embedded and mobile devices, mini computers, etc.). Furthermore, Tensorflow supports different types of neural networks which can be tuned and retrained for particular purposes. The presented results are promising, since the retrained networks correctly identify the Sun and the target, with this information the system can be controlled to properly track the Sun’s apparent trajectory without further information.","PeriodicalId":21790,"journal":{"name":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Machine learning for solar trackers\",\"authors\":\"J. Carballo, J. Bonilla, M. Berenguel, J. Fernández-Reche, Ginés García\",\"doi\":\"10.1063/1.5117524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach for solar tracking, based on deep learning techniques, is being studied and tested using Tensorflow, an open source machine learning framework. Tensorflow makes the implementation more flexible and increases the development capabilities. Tensorflow facilitates the neural network implementation on several kinds of devices (embedded and mobile devices, mini computers, etc.). Furthermore, Tensorflow supports different types of neural networks which can be tuned and retrained for particular purposes. The presented results are promising, since the retrained networks correctly identify the Sun and the target, with this information the system can be controlled to properly track the Sun’s apparent trajectory without further information.\",\"PeriodicalId\":21790,\"journal\":{\"name\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5117524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

一种基于深度学习技术的太阳能跟踪新方法正在使用开源机器学习框架Tensorflow进行研究和测试。Tensorflow使实现更加灵活,并提高了开发能力。Tensorflow促进了神经网络在多种设备(嵌入式和移动设备,微型计算机等)上的实现。此外,Tensorflow支持不同类型的神经网络,这些神经网络可以针对特定目的进行调整和再训练。提出的结果是有希望的,因为重新训练的网络正确地识别了太阳和目标,有了这些信息,系统可以被控制,正确地跟踪太阳的表观轨迹,而不需要进一步的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning for solar trackers
A new approach for solar tracking, based on deep learning techniques, is being studied and tested using Tensorflow, an open source machine learning framework. Tensorflow makes the implementation more flexible and increases the development capabilities. Tensorflow facilitates the neural network implementation on several kinds of devices (embedded and mobile devices, mini computers, etc.). Furthermore, Tensorflow supports different types of neural networks which can be tuned and retrained for particular purposes. The presented results are promising, since the retrained networks correctly identify the Sun and the target, with this information the system can be controlled to properly track the Sun’s apparent trajectory without further information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信