{"title":"不变状态张量积空间中酉矩阵的渐近自由性","authors":"B. Collins, P. Lamarre, C. Male","doi":"10.1142/s2010326322500526","DOIUrl":null,"url":null,"abstract":"In this paper, we pursue our study of asymptotic properties of families of random matrices that have a tensor structure. In previous work, the first- and second-named authors provided conditions under which tensor products of unitary random matrices are asymptotically free with respect to the normalized trace. Here, we extend this result by proving that asymptotic freeness of tensor products of Haar unitary matrices holds with respect to a significantly larger class of states. Our result relies on invariance under the symmetric group, and therefore on traffic probability. \nAs a byproduct, we explore two additional generalisations: (i) we state results of freeness in a context of general sequences of representations of the unitary group -- the fundamental representation being a particular case that corresponds to the classical asymptotic freeness result for Haar unitary matrices, and (ii) we consider actions of the symmetric group and the free group simultaneously and obtain a result of asymptotic freeness in this context as well.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"16 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic Freeness of Unitary Matrices in Tensor Product Spaces for Invariant States\",\"authors\":\"B. Collins, P. Lamarre, C. Male\",\"doi\":\"10.1142/s2010326322500526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we pursue our study of asymptotic properties of families of random matrices that have a tensor structure. In previous work, the first- and second-named authors provided conditions under which tensor products of unitary random matrices are asymptotically free with respect to the normalized trace. Here, we extend this result by proving that asymptotic freeness of tensor products of Haar unitary matrices holds with respect to a significantly larger class of states. Our result relies on invariance under the symmetric group, and therefore on traffic probability. \\nAs a byproduct, we explore two additional generalisations: (i) we state results of freeness in a context of general sequences of representations of the unitary group -- the fundamental representation being a particular case that corresponds to the classical asymptotic freeness result for Haar unitary matrices, and (ii) we consider actions of the symmetric group and the free group simultaneously and obtain a result of asymptotic freeness in this context as well.\",\"PeriodicalId\":54329,\"journal\":{\"name\":\"Random Matrices-Theory and Applications\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Matrices-Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500526\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500526","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Asymptotic Freeness of Unitary Matrices in Tensor Product Spaces for Invariant States
In this paper, we pursue our study of asymptotic properties of families of random matrices that have a tensor structure. In previous work, the first- and second-named authors provided conditions under which tensor products of unitary random matrices are asymptotically free with respect to the normalized trace. Here, we extend this result by proving that asymptotic freeness of tensor products of Haar unitary matrices holds with respect to a significantly larger class of states. Our result relies on invariance under the symmetric group, and therefore on traffic probability.
As a byproduct, we explore two additional generalisations: (i) we state results of freeness in a context of general sequences of representations of the unitary group -- the fundamental representation being a particular case that corresponds to the classical asymptotic freeness result for Haar unitary matrices, and (ii) we consider actions of the symmetric group and the free group simultaneously and obtain a result of asymptotic freeness in this context as well.
期刊介绍:
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.
Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.
Special issues devoted to single topic of current interest will also be considered and published in this journal.