Garside理论与次曲面:编织群中的一些例子

IF 0.1 Q4 MATHEMATICS
S. Schleimer, B. Wiest
{"title":"Garside理论与次曲面:编织群中的一些例子","authors":"S. Schleimer, B. Wiest","doi":"10.1515/gcc-2019-2007","DOIUrl":null,"url":null,"abstract":"Abstract Garside-theoretical solutions to the conjugacy problem in braid groups depend on the determination of a characteristic subset of the conjugacy class of any given braid, e.g. the sliding circuit set. It is conjectured that, among rigid braids with a fixed number of strands, the size of this set is bounded by a polynomial in the length of the braids. In this paper we suggest a more precise bound: for rigid braids with N strands and of Garside length L, the sliding circuit set should have at most C⋅LN-2{C\\cdot L^{N-2}} elements, for some constant C. We construct a family of braids which realise this potential worst case. Our example braids suggest that having a large sliding circuit set is a geometric property of braids, as our examples have multiple subsurfaces with large subsurface projection; thus they are “almost reducible” in multiple ways, and act on the curve graph with small translation distance.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"119 1","pages":"61 - 75"},"PeriodicalIF":0.1000,"publicationDate":"2018-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Garside theory and subsurfaces: Some examples in braid groups\",\"authors\":\"S. Schleimer, B. Wiest\",\"doi\":\"10.1515/gcc-2019-2007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Garside-theoretical solutions to the conjugacy problem in braid groups depend on the determination of a characteristic subset of the conjugacy class of any given braid, e.g. the sliding circuit set. It is conjectured that, among rigid braids with a fixed number of strands, the size of this set is bounded by a polynomial in the length of the braids. In this paper we suggest a more precise bound: for rigid braids with N strands and of Garside length L, the sliding circuit set should have at most C⋅LN-2{C\\\\cdot L^{N-2}} elements, for some constant C. We construct a family of braids which realise this potential worst case. Our example braids suggest that having a large sliding circuit set is a geometric property of braids, as our examples have multiple subsurfaces with large subsurface projection; thus they are “almost reducible” in multiple ways, and act on the curve graph with small translation distance.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"119 1\",\"pages\":\"61 - 75\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2019-2007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2019-2007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要编织群共轭问题的Garside-theoretical解依赖于任意给定编织的共轭类的特征子集的确定,例如滑动电路集。我们推测,在固定束数的刚性辫子中,该集合的大小以辫子长度的多项式为界。在本文中,我们提出了一个更精确的界:对于有N条链且Garside长度为L的刚性编织带,对于某个常数C,滑动电路集应该最多有C⋅LN-2{C\cdot L^{N-2}}个元素。我们的示例辫子表明,具有大滑动电路集是辫子的几何性质,因为我们的示例具有具有大次表面投影的多个子表面;因此,它们在多个方面是“几乎可约的”,并且作用于平移距离小的曲线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Garside theory and subsurfaces: Some examples in braid groups
Abstract Garside-theoretical solutions to the conjugacy problem in braid groups depend on the determination of a characteristic subset of the conjugacy class of any given braid, e.g. the sliding circuit set. It is conjectured that, among rigid braids with a fixed number of strands, the size of this set is bounded by a polynomial in the length of the braids. In this paper we suggest a more precise bound: for rigid braids with N strands and of Garside length L, the sliding circuit set should have at most C⋅LN-2{C\cdot L^{N-2}} elements, for some constant C. We construct a family of braids which realise this potential worst case. Our example braids suggest that having a large sliding circuit set is a geometric property of braids, as our examples have multiple subsurfaces with large subsurface projection; thus they are “almost reducible” in multiple ways, and act on the curve graph with small translation distance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信