{"title":"一种具有同步语义的模型驱动方法,用于开发硬实时wsn","authors":"J. Ro, Z. Bhatti, P. Roop","doi":"10.1109/ETFA.2014.7005178","DOIUrl":null,"url":null,"abstract":"We propose a model-driven approach for designing Wireless Sensor Network (WSN) applications, specifically for systems where hard real-time requirements must be satisfied. Traditionally, developing such systems presents difficulties in ensuring time and timing accuracy due to unpredictable computation time, ambiguities in program concurrency, and behavioural inconsistency between model and implementation. However, in contrast, the models in our approach are fully time-predictable by means of a logical time interval called a tick, while concurrency is automatically handled by the design semantics in a timing guaranteed manner. Meanwhile, the model-driven aspect of automatic code generation guarantees the behavioural consistency between model and implementation. We achieve our approach by using IEC 61499 function blocks and synchronous execution for syntax and semantics respectively. In this paper, we design a time-triggered protocol and a distributed motor synchronization as the network and application layers respectively. Then, we model the overall system for validation by performing composition of such layers. Furthermore, we explain how the logical time tick can be realized during the implementation in a way that the real-time requirement can be satisfied. Finally, the simulation and implementation results demonstrate the effectiveness of our approach.","PeriodicalId":20477,"journal":{"name":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A model-driven approach with synchronous semantics for developing hard real-time WSNs\",\"authors\":\"J. Ro, Z. Bhatti, P. Roop\",\"doi\":\"10.1109/ETFA.2014.7005178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a model-driven approach for designing Wireless Sensor Network (WSN) applications, specifically for systems where hard real-time requirements must be satisfied. Traditionally, developing such systems presents difficulties in ensuring time and timing accuracy due to unpredictable computation time, ambiguities in program concurrency, and behavioural inconsistency between model and implementation. However, in contrast, the models in our approach are fully time-predictable by means of a logical time interval called a tick, while concurrency is automatically handled by the design semantics in a timing guaranteed manner. Meanwhile, the model-driven aspect of automatic code generation guarantees the behavioural consistency between model and implementation. We achieve our approach by using IEC 61499 function blocks and synchronous execution for syntax and semantics respectively. In this paper, we design a time-triggered protocol and a distributed motor synchronization as the network and application layers respectively. Then, we model the overall system for validation by performing composition of such layers. Furthermore, we explain how the logical time tick can be realized during the implementation in a way that the real-time requirement can be satisfied. Finally, the simulation and implementation results demonstrate the effectiveness of our approach.\",\"PeriodicalId\":20477,\"journal\":{\"name\":\"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2014.7005178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2014.7005178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A model-driven approach with synchronous semantics for developing hard real-time WSNs
We propose a model-driven approach for designing Wireless Sensor Network (WSN) applications, specifically for systems where hard real-time requirements must be satisfied. Traditionally, developing such systems presents difficulties in ensuring time and timing accuracy due to unpredictable computation time, ambiguities in program concurrency, and behavioural inconsistency between model and implementation. However, in contrast, the models in our approach are fully time-predictable by means of a logical time interval called a tick, while concurrency is automatically handled by the design semantics in a timing guaranteed manner. Meanwhile, the model-driven aspect of automatic code generation guarantees the behavioural consistency between model and implementation. We achieve our approach by using IEC 61499 function blocks and synchronous execution for syntax and semantics respectively. In this paper, we design a time-triggered protocol and a distributed motor synchronization as the network and application layers respectively. Then, we model the overall system for validation by performing composition of such layers. Furthermore, we explain how the logical time tick can be realized during the implementation in a way that the real-time requirement can be satisfied. Finally, the simulation and implementation results demonstrate the effectiveness of our approach.