Alfonso Aranda, Joël M. H. Karel, P. Bonizzi, R. Peeters
{"title":"基于心电参数分布的急性心肌梗死检测","authors":"Alfonso Aranda, Joël M. H. Karel, P. Bonizzi, R. Peeters","doi":"10.23919/CinC49843.2019.9005742","DOIUrl":null,"url":null,"abstract":"Several studies in the past have evaluated the use of different ECG-based features to diagnose acute myocardial infarction (AMI). This was generally done by looking at how well a feature reflects differences between baseline (no AMI) and AMI situations. This approach tends to overlook the progress of AMI and to underestimate false positives when implemented into a continuous monitoring setting and therefore appears inadequate for it. This has hindered the adoption of those methods in the clinical practice. In this research, we present a novel set of parameters for the dynamic assessment of AMI condition. Those parameters are obtained by analyzing the changes over time in the distribution properties of ECG-based features.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"22 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute MI Detection Derived From ECG Parameters Distribution\",\"authors\":\"Alfonso Aranda, Joël M. H. Karel, P. Bonizzi, R. Peeters\",\"doi\":\"10.23919/CinC49843.2019.9005742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several studies in the past have evaluated the use of different ECG-based features to diagnose acute myocardial infarction (AMI). This was generally done by looking at how well a feature reflects differences between baseline (no AMI) and AMI situations. This approach tends to overlook the progress of AMI and to underestimate false positives when implemented into a continuous monitoring setting and therefore appears inadequate for it. This has hindered the adoption of those methods in the clinical practice. In this research, we present a novel set of parameters for the dynamic assessment of AMI condition. Those parameters are obtained by analyzing the changes over time in the distribution properties of ECG-based features.\",\"PeriodicalId\":6697,\"journal\":{\"name\":\"2019 Computing in Cardiology (CinC)\",\"volume\":\"22 1\",\"pages\":\"Page 1-Page 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CinC49843.2019.9005742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acute MI Detection Derived From ECG Parameters Distribution
Several studies in the past have evaluated the use of different ECG-based features to diagnose acute myocardial infarction (AMI). This was generally done by looking at how well a feature reflects differences between baseline (no AMI) and AMI situations. This approach tends to overlook the progress of AMI and to underestimate false positives when implemented into a continuous monitoring setting and therefore appears inadequate for it. This has hindered the adoption of those methods in the clinical practice. In this research, we present a novel set of parameters for the dynamic assessment of AMI condition. Those parameters are obtained by analyzing the changes over time in the distribution properties of ECG-based features.