关于co-*n-modules的说明

IF 0.5 2区 数学 Q3 MATHEMATICS
Yu‐Qin Mei, Jiaqun Wei
{"title":"关于co-*n-modules的说明","authors":"Yu‐Qin Mei, Jiaqun Wei","doi":"10.12988/ija.2021.91571","DOIUrl":null,"url":null,"abstract":"It is well known that tilting modules of projective dimension not more than 1 coincide with ∗-modules generating all injective modules. Later, Wei et al. introduced the notion of ∗n-modules as the generalizations of ∗-modules. Yao and Chen introduced the dual situation of ∗n-modules which are called co-∗n-modules. In this paper, we present some properties of co-∗n-modules. Mathematics Subject Classification: Primary 16D90 Secondary 16E05 16E10","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on co-*n-modules\",\"authors\":\"Yu‐Qin Mei, Jiaqun Wei\",\"doi\":\"10.12988/ija.2021.91571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that tilting modules of projective dimension not more than 1 coincide with ∗-modules generating all injective modules. Later, Wei et al. introduced the notion of ∗n-modules as the generalizations of ∗-modules. Yao and Chen introduced the dual situation of ∗n-modules which are called co-∗n-modules. In this paper, we present some properties of co-∗n-modules. Mathematics Subject Classification: Primary 16D90 Secondary 16E05 16E10\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12988/ija.2021.91571\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12988/ija.2021.91571","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,投影维数不大于1的倾斜模与产生所有内射模的* -模重合。后来,Wei等人引入了∗n-模的概念作为∗-模的推广。Yao和Chen引入了称为共* n模的* n模的对偶情形。本文给出了共* n-模的一些性质。数学学科分类:小学16D90中学16E05 16E10
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on co-*n-modules
It is well known that tilting modules of projective dimension not more than 1 coincide with ∗-modules generating all injective modules. Later, Wei et al. introduced the notion of ∗n-modules as the generalizations of ∗-modules. Yao and Chen introduced the dual situation of ∗n-modules which are called co-∗n-modules. In this paper, we present some properties of co-∗n-modules. Mathematics Subject Classification: Primary 16D90 Secondary 16E05 16E10
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信