CEIA-NLP在CASE 2022任务1:葡萄牙语抗议新闻检测

Diogo Fernandes Costa Silva, A. Junior, Gabriel Marques, A. Soares, A. R. G. Filho
{"title":"CEIA-NLP在CASE 2022任务1:葡萄牙语抗议新闻检测","authors":"Diogo Fernandes Costa Silva, A. Junior, Gabriel Marques, A. Soares, A. R. G. Filho","doi":"10.18653/v1/2022.case-1.26","DOIUrl":null,"url":null,"abstract":"This paper summarizes our work on the document classification subtask of Multilingual protest news detection of the CASE @ ACL-IJCNLP 2022 workshok. In this context, we investigate the performance of monolingual and multilingual transformer-based models in low data resources, taking Portuguese as an example and evaluating language models on document classification. Our approach became the winning solution in Portuguese document classification achieving 0.8007 F1 Score on Test set. The experimental results demonstrate that multilingual models achieve best results in scenarios with few dataset samples of specific language, because we can train models using datasets from other languages of the same task and domain.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"16 1","pages":"184-188"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CEIA-NLP at CASE 2022 Task 1: Protest News Detection for Portuguese\",\"authors\":\"Diogo Fernandes Costa Silva, A. Junior, Gabriel Marques, A. Soares, A. R. G. Filho\",\"doi\":\"10.18653/v1/2022.case-1.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper summarizes our work on the document classification subtask of Multilingual protest news detection of the CASE @ ACL-IJCNLP 2022 workshok. In this context, we investigate the performance of monolingual and multilingual transformer-based models in low data resources, taking Portuguese as an example and evaluating language models on document classification. Our approach became the winning solution in Portuguese document classification achieving 0.8007 F1 Score on Test set. The experimental results demonstrate that multilingual models achieve best results in scenarios with few dataset samples of specific language, because we can train models using datasets from other languages of the same task and domain.\",\"PeriodicalId\":80307,\"journal\":{\"name\":\"The Case manager\",\"volume\":\"16 1\",\"pages\":\"184-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Case manager\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.case-1.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.case-1.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文总结了我们在CASE @ ACL-IJCNLP 2022工作会议的多语言抗议新闻检测的文档分类子任务。在此背景下,我们研究了基于单语言和多语言转换器的模型在低数据资源下的性能,以葡萄牙语为例,并评估了语言模型在文档分类上的性能。我们的方法成为葡萄牙语文档分类的获胜解决方案,在测试集上获得了0.8007 F1分数。实验结果表明,多语言模型在特定语言的数据样本较少的情况下取得了最好的效果,因为我们可以使用来自同一任务和领域的其他语言的数据集来训练模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CEIA-NLP at CASE 2022 Task 1: Protest News Detection for Portuguese
This paper summarizes our work on the document classification subtask of Multilingual protest news detection of the CASE @ ACL-IJCNLP 2022 workshok. In this context, we investigate the performance of monolingual and multilingual transformer-based models in low data resources, taking Portuguese as an example and evaluating language models on document classification. Our approach became the winning solution in Portuguese document classification achieving 0.8007 F1 Score on Test set. The experimental results demonstrate that multilingual models achieve best results in scenarios with few dataset samples of specific language, because we can train models using datasets from other languages of the same task and domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信