有限矩存在性的一个简单非参数检验

Igor Fedotenkov
{"title":"有限矩存在性的一个简单非参数检验","authors":"Igor Fedotenkov","doi":"10.2139/ssrn.2202269","DOIUrl":null,"url":null,"abstract":"This paper proposes a simple, fast and direct nonparametric test to verify if a sample is drawn from a distribution with a finite first moment. The method can also be applied to test for the existence of finite moments of another order by taking the sample to the corresponding power. The test is based on the difference in the asymptotic behaviour of the arithmetic mean between cases when the underlying probability function either has or does not have a finite first moment. Test consistency is proved; then, test performance is illustrated with Monte-Carlo simulations and a practical application for the S&P500 index.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Simple Nonparametric Test for the Existence of Finite Moments\",\"authors\":\"Igor Fedotenkov\",\"doi\":\"10.2139/ssrn.2202269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a simple, fast and direct nonparametric test to verify if a sample is drawn from a distribution with a finite first moment. The method can also be applied to test for the existence of finite moments of another order by taking the sample to the corresponding power. The test is based on the difference in the asymptotic behaviour of the arithmetic mean between cases when the underlying probability function either has or does not have a finite first moment. Test consistency is proved; then, test performance is illustrated with Monte-Carlo simulations and a practical application for the S&P500 index.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2202269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2202269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种简单、快速、直接的非参数检验方法,用于验证样本是否来自一阶矩有限的分布。该方法也可用于检验另一阶的有限矩是否存在,方法是将样本取相应的幂次。该检验是基于当潜在概率函数具有或不具有有限第一矩的情况之间算术平均值的渐近行为的差异。验证了试验一致性;然后,通过蒙特卡罗模拟和标准普尔500指数的实际应用说明了测试性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Nonparametric Test for the Existence of Finite Moments
This paper proposes a simple, fast and direct nonparametric test to verify if a sample is drawn from a distribution with a finite first moment. The method can also be applied to test for the existence of finite moments of another order by taking the sample to the corresponding power. The test is based on the difference in the asymptotic behaviour of the arithmetic mean between cases when the underlying probability function either has or does not have a finite first moment. Test consistency is proved; then, test performance is illustrated with Monte-Carlo simulations and a practical application for the S&P500 index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信