氧对HBr + Cl2 + O2等离子体中气相参数和硅反应蚀刻动力学的影响机理

A. M. Efremov, V. Rybkin, V. Betelin, K. Kwon
{"title":"氧对HBr + Cl2 + O2等离子体中气相参数和硅反应蚀刻动力学的影响机理","authors":"A. M. Efremov, V. Rybkin, V. Betelin, K. Kwon","doi":"10.6060/ivkkt.20196210.6046","DOIUrl":null,"url":null,"abstract":"The effects of both HBr/O2 and Cl2/O2 mixing ratios in HBr+Cl2+O2 gas mixture on plasma parameters, steady-state densities of active species and Si etching kinetics were studied under the typical conditions of reactive ion etching process: total gas pressure (p = 10 mTorr), input power (W = 500 W), bias power (Wdc = 200 W). The data on internal plasma parameters and plasma chemistry were obtained using a combination of Langmuir probe diagnostics and 0-dimensional (global) plasma modeling. It was found that the variation in HBr/O2 mixing ratio at constant Cl2 fraction in a feed gas is characterized by the stronger impact on the steady-state plasma composition through both electron-impact and atom-molecular reaction kinetics as well as allows one to obtain the wider change in the total halogen atom density. It was shown that changes in both HBr/O2 and Cl2/O2 mixing ratios toward O2-rich plasmas lowers the Si etching rate that exhibits no evident correlations with total halogen atom flux and ion energy flux. The model-based analysis of Si etching kinetics allowed one to conclude that the effective reaction probability for Si + Cl/Br heterogeneous reaction depends on the flux of oxidative species – oxygen atoms and OH radicals. The reasons may be 1) the oxidation of silicon resulting in higher reaction threshold energy; and 2) the decreasing fraction of free adsorption sites for Cl/Br atoms due to the oxidation of reaction products into the lower volatile SiBrxOy and SiClxOy compounds.","PeriodicalId":14640,"journal":{"name":"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON MECHANISMS OF OXYGEN INFLUENCE ON GAS-PHASE PARAMETERS AND SILICON REACTIVE-ION ETCHING KINETICS IN HBr + Cl2 + O2 PLASMA\",\"authors\":\"A. M. Efremov, V. Rybkin, V. Betelin, K. Kwon\",\"doi\":\"10.6060/ivkkt.20196210.6046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of both HBr/O2 and Cl2/O2 mixing ratios in HBr+Cl2+O2 gas mixture on plasma parameters, steady-state densities of active species and Si etching kinetics were studied under the typical conditions of reactive ion etching process: total gas pressure (p = 10 mTorr), input power (W = 500 W), bias power (Wdc = 200 W). The data on internal plasma parameters and plasma chemistry were obtained using a combination of Langmuir probe diagnostics and 0-dimensional (global) plasma modeling. It was found that the variation in HBr/O2 mixing ratio at constant Cl2 fraction in a feed gas is characterized by the stronger impact on the steady-state plasma composition through both electron-impact and atom-molecular reaction kinetics as well as allows one to obtain the wider change in the total halogen atom density. It was shown that changes in both HBr/O2 and Cl2/O2 mixing ratios toward O2-rich plasmas lowers the Si etching rate that exhibits no evident correlations with total halogen atom flux and ion energy flux. The model-based analysis of Si etching kinetics allowed one to conclude that the effective reaction probability for Si + Cl/Br heterogeneous reaction depends on the flux of oxidative species – oxygen atoms and OH radicals. The reasons may be 1) the oxidation of silicon resulting in higher reaction threshold energy; and 2) the decreasing fraction of free adsorption sites for Cl/Br atoms due to the oxidation of reaction products into the lower volatile SiBrxOy and SiClxOy compounds.\",\"PeriodicalId\":14640,\"journal\":{\"name\":\"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6060/ivkkt.20196210.6046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6060/ivkkt.20196210.6046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在反应离子蚀刻过程的典型条件下:总气压(p = 10 mTorr)、输入功率(W = 500 W)、偏置功率(Wdc = 200 W),研究了HBr/O2和Cl2/O2混合比例对等离子体参数、活性物质稳态密度和Si蚀刻动力学的影响,并结合Langmuir探针诊断和0维(全局)等离子体模型获得了内部等离子体参数和等离子体化学数据。研究发现,在原料气中Cl2分数恒定时,HBr/O2混合比的变化,通过电子-冲击和原子-分子反应动力学对稳态等离子体组成的影响更大,并且可以获得更大的总卤素原子密度变化。结果表明,HBr/O2和Cl2/O2向富O2等离子体混合比的变化降低了Si的蚀刻速率,且与总卤素原子通量和离子能量通量没有明显的相关性。基于模型的Si蚀刻动力学分析可以得出Si + Cl/Br非均相反应的有效反应概率取决于氧化物质-氧原子和OH自由基的通量。其原因可能是:1)硅氧化导致反应阈值能量较高;2)由于反应产物氧化为挥发性较低的SiBrxOy和SiClxOy化合物,Cl/Br原子的自由吸附位点比例减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON MECHANISMS OF OXYGEN INFLUENCE ON GAS-PHASE PARAMETERS AND SILICON REACTIVE-ION ETCHING KINETICS IN HBr + Cl2 + O2 PLASMA
The effects of both HBr/O2 and Cl2/O2 mixing ratios in HBr+Cl2+O2 gas mixture on plasma parameters, steady-state densities of active species and Si etching kinetics were studied under the typical conditions of reactive ion etching process: total gas pressure (p = 10 mTorr), input power (W = 500 W), bias power (Wdc = 200 W). The data on internal plasma parameters and plasma chemistry were obtained using a combination of Langmuir probe diagnostics and 0-dimensional (global) plasma modeling. It was found that the variation in HBr/O2 mixing ratio at constant Cl2 fraction in a feed gas is characterized by the stronger impact on the steady-state plasma composition through both electron-impact and atom-molecular reaction kinetics as well as allows one to obtain the wider change in the total halogen atom density. It was shown that changes in both HBr/O2 and Cl2/O2 mixing ratios toward O2-rich plasmas lowers the Si etching rate that exhibits no evident correlations with total halogen atom flux and ion energy flux. The model-based analysis of Si etching kinetics allowed one to conclude that the effective reaction probability for Si + Cl/Br heterogeneous reaction depends on the flux of oxidative species – oxygen atoms and OH radicals. The reasons may be 1) the oxidation of silicon resulting in higher reaction threshold energy; and 2) the decreasing fraction of free adsorption sites for Cl/Br atoms due to the oxidation of reaction products into the lower volatile SiBrxOy and SiClxOy compounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信