非紧严格凸投影曲面的欧几里得细胞分解算法

Q4 Mathematics
Stephan Tillmann, Sampson Wong
{"title":"非紧严格凸投影曲面的欧几里得细胞分解算法","authors":"Stephan Tillmann, Sampson Wong","doi":"10.20382/jocg.v7i1a12","DOIUrl":null,"url":null,"abstract":"Cooper and Long generalised Epstein and Penner's Euclidean cell decomposition of cusped hyperbolic $n$–manifolds of finite volume to non-compact strictly convex projective $n$–manifolds of finite volume. We show that Weeks' algorithm to compute this decomposition for a hyperbolic surface generalises to strictly convex projective surfaces.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"95 1","pages":"237-255"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An algorithm for the Euclidean cell decomposition of a non-compact strictly convex projective surface\",\"authors\":\"Stephan Tillmann, Sampson Wong\",\"doi\":\"10.20382/jocg.v7i1a12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooper and Long generalised Epstein and Penner's Euclidean cell decomposition of cusped hyperbolic $n$–manifolds of finite volume to non-compact strictly convex projective $n$–manifolds of finite volume. We show that Weeks' algorithm to compute this decomposition for a hyperbolic surface generalises to strictly convex projective surfaces.\",\"PeriodicalId\":54969,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"95 1\",\"pages\":\"237-255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20382/jocg.v7i1a12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v7i1a12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

Cooper和Long将Epstein和Penner有限体积尖头双曲$n$ -流形的欧几里得单元分解推广到有限体积非紧严格凸射影$n$ -流形。我们证明Weeks算法计算双曲曲面的这种分解推广到严格凸投影曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algorithm for the Euclidean cell decomposition of a non-compact strictly convex projective surface
Cooper and Long generalised Epstein and Penner's Euclidean cell decomposition of cusped hyperbolic $n$–manifolds of finite volume to non-compact strictly convex projective $n$–manifolds of finite volume. We show that Weeks' algorithm to compute this decomposition for a hyperbolic surface generalises to strictly convex projective surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信