九十年的k-三对角矩阵

IF 0.4 4区 数学 Q4 MATHEMATICS
C. M. D. Fonseca, V. Kowalenko, L. Losonczi
{"title":"九十年的k-三对角矩阵","authors":"C. M. D. Fonseca, V. Kowalenko, L. Losonczi","doi":"10.1556/012.2020.57.3.1466","DOIUrl":null,"url":null,"abstract":"This survey revisits Jenő Egerváry and Otto Szász’s article of 1928 on trigonometric polynomials and simple structured matrices focussing mainly on the latter topic. In particular, we concentrate on the spectral theory for the first type of the matrices introduced in the article, which are today referred to as k-tridiagonal matrices, and then discuss the explosion of interest in them over the last two decades, most of which could have benefitted from the seminal article, had it not been overlooked.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"114 1","pages":"298-311"},"PeriodicalIF":0.4000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Ninety years of k-tridiagonal matrices\",\"authors\":\"C. M. D. Fonseca, V. Kowalenko, L. Losonczi\",\"doi\":\"10.1556/012.2020.57.3.1466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This survey revisits Jenő Egerváry and Otto Szász’s article of 1928 on trigonometric polynomials and simple structured matrices focussing mainly on the latter topic. In particular, we concentrate on the spectral theory for the first type of the matrices introduced in the article, which are today referred to as k-tridiagonal matrices, and then discuss the explosion of interest in them over the last two decades, most of which could have benefitted from the seminal article, had it not been overlooked.\",\"PeriodicalId\":51187,\"journal\":{\"name\":\"Studia Scientiarum Mathematicarum Hungarica\",\"volume\":\"114 1\",\"pages\":\"298-311\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Scientiarum Mathematicarum Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2020.57.3.1466\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2020.57.3.1466","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 16

摘要

本文回顾了jenerEgerváry和Otto Szász在1928年关于三角多项式和简单结构矩阵的文章,主要关注后者。特别是,我们专注于本文中介绍的第一类矩阵的谱理论,今天被称为k-三对角矩阵,然后讨论在过去二十年中对它们的兴趣爆炸,其中大部分可能受益于开创性的文章,如果它没有被忽视的话。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ninety years of k-tridiagonal matrices
This survey revisits Jenő Egerváry and Otto Szász’s article of 1928 on trigonometric polynomials and simple structured matrices focussing mainly on the latter topic. In particular, we concentrate on the spectral theory for the first type of the matrices introduced in the article, which are today referred to as k-tridiagonal matrices, and then discuss the explosion of interest in them over the last two decades, most of which could have benefitted from the seminal article, had it not been overlooked.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信