K5的交叉数n

Daniel J. Kleitman
{"title":"K5的交叉数n","authors":"Daniel J. Kleitman","doi":"10.1016/S0021-9800(70)80087-4","DOIUrl":null,"url":null,"abstract":"<div><p>Several arguments are presented which provide restrictions on the possible number of crossings in drawings of bipartite graphs. In particular it is shown that <em>cr(K<sub>5,n</sub>)</em>=4[1/2<em>n</em>][1/2(<em>n</em>−1)] and <em>cr(K<sub>6,n</sub>)</em>=6[1/2<em>n</em>][1/2(<em>n</em>−1)].</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 4","pages":"Pages 315-323"},"PeriodicalIF":0.0000,"publicationDate":"1970-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80087-4","citationCount":"221","resultStr":"{\"title\":\"The crossing number of K5,n\",\"authors\":\"Daniel J. Kleitman\",\"doi\":\"10.1016/S0021-9800(70)80087-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Several arguments are presented which provide restrictions on the possible number of crossings in drawings of bipartite graphs. In particular it is shown that <em>cr(K<sub>5,n</sub>)</em>=4[1/2<em>n</em>][1/2(<em>n</em>−1)] and <em>cr(K<sub>6,n</sub>)</em>=6[1/2<em>n</em>][1/2(<em>n</em>−1)].</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"9 4\",\"pages\":\"Pages 315-323\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80087-4\",\"citationCount\":\"221\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 221

摘要

给出了对二部图中可能的交叉数的限制。在特定的结果表明,cr (K5, n) = 4 [1/2n] [1/2 (n−1)]和cr(转K6 n) = 6 [1/2n] [1/2 (n−1)]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The crossing number of K5,n

Several arguments are presented which provide restrictions on the possible number of crossings in drawings of bipartite graphs. In particular it is shown that cr(K5,n)=4[1/2n][1/2(n−1)] and cr(K6,n)=6[1/2n][1/2(n−1)].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信