光滑排列上的一些组合结果

IF 0.4 Q4 MATHEMATICS, APPLIED
Shoni Gilboa, E. Lapid
{"title":"光滑排列上的一些组合结果","authors":"Shoni Gilboa, E. Lapid","doi":"10.4310/JOC.2021.v12.n2.a7","DOIUrl":null,"url":null,"abstract":"We show that any smooth permutation $\\sigma\\in S_n$ is characterized by the set ${\\mathbf{C}}(\\sigma)$ of transpositions and $3$-cycles in the Bruhat interval $(S_n)_{\\leq\\sigma}$, and that $\\sigma$ is the product (in a certain order) of the transpositions in ${\\mathbf{C}}(\\sigma)$. We also characterize the image of the map $\\sigma\\mapsto{\\mathbf{C}}(\\sigma)$. As an application, we show that $\\sigma$ is smooth if and only if the intersection of $(S_n)_{\\leq\\sigma}$ with every conjugate of a parabolic subgroup of $S_n$ admits a maximum. This also gives another approach for enumerating smooth permutations and subclasses thereof. Finally, we relate covexillary permutations to smooth ones and rephrase the results in terms of the (co)essential set in the sense of Fulton.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"16 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some combinatorial results on smooth permutations\",\"authors\":\"Shoni Gilboa, E. Lapid\",\"doi\":\"10.4310/JOC.2021.v12.n2.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that any smooth permutation $\\\\sigma\\\\in S_n$ is characterized by the set ${\\\\mathbf{C}}(\\\\sigma)$ of transpositions and $3$-cycles in the Bruhat interval $(S_n)_{\\\\leq\\\\sigma}$, and that $\\\\sigma$ is the product (in a certain order) of the transpositions in ${\\\\mathbf{C}}(\\\\sigma)$. We also characterize the image of the map $\\\\sigma\\\\mapsto{\\\\mathbf{C}}(\\\\sigma)$. As an application, we show that $\\\\sigma$ is smooth if and only if the intersection of $(S_n)_{\\\\leq\\\\sigma}$ with every conjugate of a parabolic subgroup of $S_n$ admits a maximum. This also gives another approach for enumerating smooth permutations and subclasses thereof. Finally, we relate covexillary permutations to smooth ones and rephrase the results in terms of the (co)essential set in the sense of Fulton.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/JOC.2021.v12.n2.a7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/JOC.2021.v12.n2.a7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了任何光滑排列$\sigma\in S_n$都是由Bruhat区间$(S_n)_{\leq\sigma}$中的转置和$3$ -环的集合${\mathbf{C}}(\sigma)$表征的,并且$\sigma$是${\mathbf{C}}(\sigma)$中的转置的乘积(以一定的顺序)。我们还描述了地图的图像$\sigma\mapsto{\mathbf{C}}(\sigma)$。作为一个应用,我们证明了$\sigma$是光滑的当且仅当$(S_n)_{\leq\sigma}$与$S_n$的一个抛物子群的每个共轭的交允许极大值。这也给出了枚举平滑排列及其子类的另一种方法。最后,我们将共簇排列与光滑排列联系起来,并用富尔顿意义上的(co)本质集来重新表述结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some combinatorial results on smooth permutations
We show that any smooth permutation $\sigma\in S_n$ is characterized by the set ${\mathbf{C}}(\sigma)$ of transpositions and $3$-cycles in the Bruhat interval $(S_n)_{\leq\sigma}$, and that $\sigma$ is the product (in a certain order) of the transpositions in ${\mathbf{C}}(\sigma)$. We also characterize the image of the map $\sigma\mapsto{\mathbf{C}}(\sigma)$. As an application, we show that $\sigma$ is smooth if and only if the intersection of $(S_n)_{\leq\sigma}$ with every conjugate of a parabolic subgroup of $S_n$ admits a maximum. This also gives another approach for enumerating smooth permutations and subclasses thereof. Finally, we relate covexillary permutations to smooth ones and rephrase the results in terms of the (co)essential set in the sense of Fulton.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信