基于Mason模型的压电薄膜体声谐振器仿真与研究

Linyu Xu, Xiushan Wu, Yuqi Zeng
{"title":"基于Mason模型的压电薄膜体声谐振器仿真与研究","authors":"Linyu Xu, Xiushan Wu, Yuqi Zeng","doi":"10.1109/ICICM54364.2021.9660240","DOIUrl":null,"url":null,"abstract":"With the rapid development of micromechanical technology and the maturity of integrated circuit technology, which have made it possible to make miniaturization of high-performance frequency control devices. The piezoelectric film bulk acoustic resonator (FBAR) has gradually become one of the research hotspots of RF filters. This paper mainly derives the electrical impedance model of FBAR based on the sound wave transmission characteristics of thin-film materials, a one-dimensional Mason model is established for the later RF filter design, and the influence of the thickness and resonant area of each film on the resonant frequency of the device is studied. And detailed simulation of the physical parameters of the model. The simulation results show that as the thickness of each layer increases, the acoustic wave transmission path increases, and the loss increases, which causes the resonant frequency decrease gradually; as the resonant area increases, the resonant frequency is not affected, but the impedance value of the device decreases gradually.","PeriodicalId":6693,"journal":{"name":"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)","volume":"11 1","pages":"184-188"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation and Research of Piezoelectric Film Bulk Acoustic Resonator Based on Mason Model\",\"authors\":\"Linyu Xu, Xiushan Wu, Yuqi Zeng\",\"doi\":\"10.1109/ICICM54364.2021.9660240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of micromechanical technology and the maturity of integrated circuit technology, which have made it possible to make miniaturization of high-performance frequency control devices. The piezoelectric film bulk acoustic resonator (FBAR) has gradually become one of the research hotspots of RF filters. This paper mainly derives the electrical impedance model of FBAR based on the sound wave transmission characteristics of thin-film materials, a one-dimensional Mason model is established for the later RF filter design, and the influence of the thickness and resonant area of each film on the resonant frequency of the device is studied. And detailed simulation of the physical parameters of the model. The simulation results show that as the thickness of each layer increases, the acoustic wave transmission path increases, and the loss increases, which causes the resonant frequency decrease gradually; as the resonant area increases, the resonant frequency is not affected, but the impedance value of the device decreases gradually.\",\"PeriodicalId\":6693,\"journal\":{\"name\":\"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)\",\"volume\":\"11 1\",\"pages\":\"184-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICM54364.2021.9660240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICM54364.2021.9660240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着微机械技术的飞速发展和集成电路技术的成熟,使得高性能变频调速装置的小型化成为可能。压电薄膜体声谐振器(FBAR)已逐渐成为射频滤波器的研究热点之一。本文主要基于薄膜材料的声波传输特性推导了FBAR的电阻抗模型,建立了一维Mason模型,用于后期的RF滤波器设计,并研究了各薄膜厚度和谐振面积对器件谐振频率的影响。并对模型的物理参数进行了详细的仿真。仿真结果表明:随着各层厚度的增加,声波传播路径增加,损耗增大,导致谐振频率逐渐降低;随着谐振面积的增大,谐振频率不受影响,但器件的阻抗值逐渐减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation and Research of Piezoelectric Film Bulk Acoustic Resonator Based on Mason Model
With the rapid development of micromechanical technology and the maturity of integrated circuit technology, which have made it possible to make miniaturization of high-performance frequency control devices. The piezoelectric film bulk acoustic resonator (FBAR) has gradually become one of the research hotspots of RF filters. This paper mainly derives the electrical impedance model of FBAR based on the sound wave transmission characteristics of thin-film materials, a one-dimensional Mason model is established for the later RF filter design, and the influence of the thickness and resonant area of each film on the resonant frequency of the device is studied. And detailed simulation of the physical parameters of the model. The simulation results show that as the thickness of each layer increases, the acoustic wave transmission path increases, and the loss increases, which causes the resonant frequency decrease gradually; as the resonant area increases, the resonant frequency is not affected, but the impedance value of the device decreases gradually.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信