整数值GARCH过程的混合特性

Pub Date : 2021-01-01 DOI:10.30757/ALEA.V18-18
P. Doukhan, N. M. Khan, Michael H. Neumann
{"title":"整数值GARCH过程的混合特性","authors":"P. Doukhan, N. M. Khan, Michael H. Neumann","doi":"10.30757/ALEA.V18-18","DOIUrl":null,"url":null,"abstract":"We consider models for count variables with a GARCH-type structure. Such a process consists of an integer-valued component and a volatility process. Using arguments for contractive Markov chains we prove that this bivariate process has a unique stationary regime. Furthermore, we show absolute regularity (β-mixing) with geometrically decaying coefficients for the count process. These probabilistic results are complemented by a statistical analysis and a few simulations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Mixing properties of integer-valued GARCH processes\",\"authors\":\"P. Doukhan, N. M. Khan, Michael H. Neumann\",\"doi\":\"10.30757/ALEA.V18-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider models for count variables with a GARCH-type structure. Such a process consists of an integer-valued component and a volatility process. Using arguments for contractive Markov chains we prove that this bivariate process has a unique stationary regime. Furthermore, we show absolute regularity (β-mixing) with geometrically decaying coefficients for the count process. These probabilistic results are complemented by a statistical analysis and a few simulations.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/ALEA.V18-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/ALEA.V18-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们考虑具有garch类型结构的计数变量模型。该过程由整数分量和波动过程组成。利用压缩马尔可夫链的参数,证明了该二元过程具有唯一的平稳区。此外,我们在计数过程中显示了具有几何衰减系数的绝对规律性(β-混合)。这些概率结果由统计分析和一些模拟加以补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Mixing properties of integer-valued GARCH processes
We consider models for count variables with a GARCH-type structure. Such a process consists of an integer-valued component and a volatility process. Using arguments for contractive Markov chains we prove that this bivariate process has a unique stationary regime. Furthermore, we show absolute regularity (β-mixing) with geometrically decaying coefficients for the count process. These probabilistic results are complemented by a statistical analysis and a few simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信