{"title":"基于概率的多目标优化的新型鲁棒设计在加工工艺参数中的应用","authors":"M. Zheng, H. Teng, Yi Wang","doi":"10.5937/vojtehg71-39747","DOIUrl":null,"url":null,"abstract":"Introduction/purpose: New robust design by means of probability-based multi-objective optimization takes the arithmetic mean value of the performance indicator and its deviation as twin independent responses of the performance indicator. The aim of this article is to check the applicability of new robust design in optimizing machining process parameters. To conduct the examination in detail, the robust design for optimal cutting parameters to minimize energy consumption during the turning of AISI 1018 steel at a constant material removal rate is applied as well as the concurrent optimization of the machining process parameters and the tolerance allocation of a spheroidal graphite cast iron piston. Methods: In the spirit of the probability-based method for multi-objective optimization, the arithmetic mean value of the performance indicator and its deviation are taken as two independent responses of the performance indicator to implement robust design. Each of the above twin responses contributes one part of the partial preferable probabilities to the performance indicator of the alternatives in the treatment. The arithmetic mean value of the performance indicator should be assessed as a representative of the performance indicator according to the function or the preference of the performance indicator, and the deviation is the other index of the performance indicator, which has the characteristic of the 99 smaller-the-better in general. Furthermore, the square root of the product of the above two parts of the partial preferable probability forms the actual preferable probability of the performance indicator. Moreover, the product of partial preferable probabilities gives the total preferable probability of each alternative, which is the overall and unique index of each alternative in the robust optimum. Results: The paper gives the rational optimum cutting parameters for minimizing energy consumption during the turning of AISI 1018 steel at a constant material removal rate and the concurrent optimization of the machining process parameters and the tolerance allocation of a spheroidal graphite cast iron piston. Conclusion: The application study indicates its rationality and convenience of new robust optimization in the optimization of machining process parameters.","PeriodicalId":30576,"journal":{"name":"Vojnotehnicki Glasnik","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of new robust design by means of probability-based multi-objective optimization to machining process parameters\",\"authors\":\"M. Zheng, H. Teng, Yi Wang\",\"doi\":\"10.5937/vojtehg71-39747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction/purpose: New robust design by means of probability-based multi-objective optimization takes the arithmetic mean value of the performance indicator and its deviation as twin independent responses of the performance indicator. The aim of this article is to check the applicability of new robust design in optimizing machining process parameters. To conduct the examination in detail, the robust design for optimal cutting parameters to minimize energy consumption during the turning of AISI 1018 steel at a constant material removal rate is applied as well as the concurrent optimization of the machining process parameters and the tolerance allocation of a spheroidal graphite cast iron piston. Methods: In the spirit of the probability-based method for multi-objective optimization, the arithmetic mean value of the performance indicator and its deviation are taken as two independent responses of the performance indicator to implement robust design. Each of the above twin responses contributes one part of the partial preferable probabilities to the performance indicator of the alternatives in the treatment. The arithmetic mean value of the performance indicator should be assessed as a representative of the performance indicator according to the function or the preference of the performance indicator, and the deviation is the other index of the performance indicator, which has the characteristic of the 99 smaller-the-better in general. Furthermore, the square root of the product of the above two parts of the partial preferable probability forms the actual preferable probability of the performance indicator. Moreover, the product of partial preferable probabilities gives the total preferable probability of each alternative, which is the overall and unique index of each alternative in the robust optimum. Results: The paper gives the rational optimum cutting parameters for minimizing energy consumption during the turning of AISI 1018 steel at a constant material removal rate and the concurrent optimization of the machining process parameters and the tolerance allocation of a spheroidal graphite cast iron piston. Conclusion: The application study indicates its rationality and convenience of new robust optimization in the optimization of machining process parameters.\",\"PeriodicalId\":30576,\"journal\":{\"name\":\"Vojnotehnicki Glasnik\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vojnotehnicki Glasnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/vojtehg71-39747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vojnotehnicki Glasnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/vojtehg71-39747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of new robust design by means of probability-based multi-objective optimization to machining process parameters
Introduction/purpose: New robust design by means of probability-based multi-objective optimization takes the arithmetic mean value of the performance indicator and its deviation as twin independent responses of the performance indicator. The aim of this article is to check the applicability of new robust design in optimizing machining process parameters. To conduct the examination in detail, the robust design for optimal cutting parameters to minimize energy consumption during the turning of AISI 1018 steel at a constant material removal rate is applied as well as the concurrent optimization of the machining process parameters and the tolerance allocation of a spheroidal graphite cast iron piston. Methods: In the spirit of the probability-based method for multi-objective optimization, the arithmetic mean value of the performance indicator and its deviation are taken as two independent responses of the performance indicator to implement robust design. Each of the above twin responses contributes one part of the partial preferable probabilities to the performance indicator of the alternatives in the treatment. The arithmetic mean value of the performance indicator should be assessed as a representative of the performance indicator according to the function or the preference of the performance indicator, and the deviation is the other index of the performance indicator, which has the characteristic of the 99 smaller-the-better in general. Furthermore, the square root of the product of the above two parts of the partial preferable probability forms the actual preferable probability of the performance indicator. Moreover, the product of partial preferable probabilities gives the total preferable probability of each alternative, which is the overall and unique index of each alternative in the robust optimum. Results: The paper gives the rational optimum cutting parameters for minimizing energy consumption during the turning of AISI 1018 steel at a constant material removal rate and the concurrent optimization of the machining process parameters and the tolerance allocation of a spheroidal graphite cast iron piston. Conclusion: The application study indicates its rationality and convenience of new robust optimization in the optimization of machining process parameters.