{"title":"网络安全中的机器学习:技术与挑战","authors":"J. Bharadiya","doi":"10.47672/ejt.1486","DOIUrl":null,"url":null,"abstract":"In the computer world, data science is the force behind the recent dramatic changes in cybersecurity's operations and technologies. The secret to making a security system automated and intelligent is to extract patterns or insights related to security incidents from cybersecurity data and construct appropriate data-driven models. Data science, also known as diverse scientific approaches, machine learning techniques, processes, and systems, is the study of actual occurrences via the use of data. Due to its distinctive qualities, such as flexibility, scalability, and the capability to quickly adapt to new and unknowable obstacles, machine learning techniques have been used in many scientific fields. Due to notable advancements in social networks, cloud and web technologies, online banking, mobile environments, smart grids, etc., cyber security is a rapidly expanding sector that requires a lot of attention. Such a broad range of computer security issues have been effectively addressed by various machine learning techniques. This article covers several machine-learning applications in cyber security. Phishing detection, network intrusion detection, keystroke dynamics authentication, cryptography, human interaction proofs, spam detection in social networks, smart meter energy consumption profiling, and security concerns with machine learning techniques themselves are all covered in this study. The methodology involves collecting a large dataset of phishing and legitimate instances, extracting relevant features such as email headers, content, and URLs, and training a machine-learning model using supervised learning algorithms. Machine learning models can effectively identify phishing emails and websites with high accuracy and low false positive rates. To enhance phishing detection, it is recommended to continuously update the training dataset to include new phishing techniques and to employ ensemble methods that combine multiple machine learning models for better performance. \n ","PeriodicalId":55090,"journal":{"name":"Glass Technology-European Journal of Glass Science and Technology Part a","volume":"22 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Machine Learning in Cybersecurity: Techniques and Challenges\",\"authors\":\"J. Bharadiya\",\"doi\":\"10.47672/ejt.1486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the computer world, data science is the force behind the recent dramatic changes in cybersecurity's operations and technologies. The secret to making a security system automated and intelligent is to extract patterns or insights related to security incidents from cybersecurity data and construct appropriate data-driven models. Data science, also known as diverse scientific approaches, machine learning techniques, processes, and systems, is the study of actual occurrences via the use of data. Due to its distinctive qualities, such as flexibility, scalability, and the capability to quickly adapt to new and unknowable obstacles, machine learning techniques have been used in many scientific fields. Due to notable advancements in social networks, cloud and web technologies, online banking, mobile environments, smart grids, etc., cyber security is a rapidly expanding sector that requires a lot of attention. Such a broad range of computer security issues have been effectively addressed by various machine learning techniques. This article covers several machine-learning applications in cyber security. Phishing detection, network intrusion detection, keystroke dynamics authentication, cryptography, human interaction proofs, spam detection in social networks, smart meter energy consumption profiling, and security concerns with machine learning techniques themselves are all covered in this study. The methodology involves collecting a large dataset of phishing and legitimate instances, extracting relevant features such as email headers, content, and URLs, and training a machine-learning model using supervised learning algorithms. Machine learning models can effectively identify phishing emails and websites with high accuracy and low false positive rates. To enhance phishing detection, it is recommended to continuously update the training dataset to include new phishing techniques and to employ ensemble methods that combine multiple machine learning models for better performance. \\n \",\"PeriodicalId\":55090,\"journal\":{\"name\":\"Glass Technology-European Journal of Glass Science and Technology Part a\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glass Technology-European Journal of Glass Science and Technology Part a\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.47672/ejt.1486\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Technology-European Journal of Glass Science and Technology Part a","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.47672/ejt.1486","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Machine Learning in Cybersecurity: Techniques and Challenges
In the computer world, data science is the force behind the recent dramatic changes in cybersecurity's operations and technologies. The secret to making a security system automated and intelligent is to extract patterns or insights related to security incidents from cybersecurity data and construct appropriate data-driven models. Data science, also known as diverse scientific approaches, machine learning techniques, processes, and systems, is the study of actual occurrences via the use of data. Due to its distinctive qualities, such as flexibility, scalability, and the capability to quickly adapt to new and unknowable obstacles, machine learning techniques have been used in many scientific fields. Due to notable advancements in social networks, cloud and web technologies, online banking, mobile environments, smart grids, etc., cyber security is a rapidly expanding sector that requires a lot of attention. Such a broad range of computer security issues have been effectively addressed by various machine learning techniques. This article covers several machine-learning applications in cyber security. Phishing detection, network intrusion detection, keystroke dynamics authentication, cryptography, human interaction proofs, spam detection in social networks, smart meter energy consumption profiling, and security concerns with machine learning techniques themselves are all covered in this study. The methodology involves collecting a large dataset of phishing and legitimate instances, extracting relevant features such as email headers, content, and URLs, and training a machine-learning model using supervised learning algorithms. Machine learning models can effectively identify phishing emails and websites with high accuracy and low false positive rates. To enhance phishing detection, it is recommended to continuously update the training dataset to include new phishing techniques and to employ ensemble methods that combine multiple machine learning models for better performance.
期刊介绍:
The Journal of the Society of Glass Technology was published between 1917 and 1959. There were four or six issues per year depending on economic circumstances of the Society and the country. Each issue contains Proceedings, Transactions, Abstracts, News and Reviews, and Advertisements, all thesesections were numbered separately. The bound volumes collected these pages into separate sections, dropping the adverts. There is a list of Council members and Officers of the Society and earlier volumes also had lists of personal and company members.
JSGT was divided into Part A Glass Technology and Part B Physics and Chemistry of Glasses in 1960.