通过多尺度产物改进短外显子的预测

Guishan Zhang, Xiaolei Zhang, Guocheng Pan, Yangjiang Yu, Yaowen Chen
{"title":"通过多尺度产物改进短外显子的预测","authors":"Guishan Zhang, Xiaolei Zhang, Guocheng Pan, Yangjiang Yu, Yaowen Chen","doi":"10.1109/CISP-BMEI.2017.8302225","DOIUrl":null,"url":null,"abstract":"Exon is an important functional region of eukaryotic DNA sequence. Prediction of exons can help to understand the structure and function of protein. However, the issue of finding an efficient technique to detect the numbers and locations of short coding sequences automatically is an unsolved problem. In this work, a short exon prediction method based on multiscale products in B-spline wavelet domain is proposed. The proposed wavelet denoising and multiscale products-based technique (WDMP) for short exons prediction have the following three features. (1) A wavelet package denoising method is applied to smooth the DNA numerical sequences. (2) A new B-spline wavelet function is designed to extract the exon features in multiscale domain, so the effect of window length is avoided. In addition, this wavelet has a higher degree of freedom for curve design. (3) We multiply the adjacent coefficients to exploit the high inter-scale correlation of the exon data, while these correlation features are used to separate the exon signals from background noise. Compared with four well-known model-independent methods, case studies demonstrate that the proposed WDMP method helps to improve the prediction accuracy of short exons significantly.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"39 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved prediction of short exons via multiscale products\",\"authors\":\"Guishan Zhang, Xiaolei Zhang, Guocheng Pan, Yangjiang Yu, Yaowen Chen\",\"doi\":\"10.1109/CISP-BMEI.2017.8302225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exon is an important functional region of eukaryotic DNA sequence. Prediction of exons can help to understand the structure and function of protein. However, the issue of finding an efficient technique to detect the numbers and locations of short coding sequences automatically is an unsolved problem. In this work, a short exon prediction method based on multiscale products in B-spline wavelet domain is proposed. The proposed wavelet denoising and multiscale products-based technique (WDMP) for short exons prediction have the following three features. (1) A wavelet package denoising method is applied to smooth the DNA numerical sequences. (2) A new B-spline wavelet function is designed to extract the exon features in multiscale domain, so the effect of window length is avoided. In addition, this wavelet has a higher degree of freedom for curve design. (3) We multiply the adjacent coefficients to exploit the high inter-scale correlation of the exon data, while these correlation features are used to separate the exon signals from background noise. Compared with four well-known model-independent methods, case studies demonstrate that the proposed WDMP method helps to improve the prediction accuracy of short exons significantly.\",\"PeriodicalId\":6474,\"journal\":{\"name\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"39 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2017.8302225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8302225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

外显子是真核生物DNA序列的重要功能区域。外显子的预测有助于了解蛋白质的结构和功能。然而,如何有效地自动检测短编码序列的数量和位置一直是一个亟待解决的问题。本文提出了一种基于b样条小波域多尺度积的短外显子预测方法。提出的小波去噪和基于多尺度积的短外显子预测技术具有以下三个特点。(1)采用小波包去噪方法对DNA数值序列进行平滑处理。(2)设计了一种新的b样条小波函数来提取多尺度域的外显子特征,避免了窗口长度的影响。此外,该小波对曲线设计具有较高的自由度。(3)将相邻系数相乘,利用外显子数据的高尺度间相关性,利用这些相关性特征将外显子信号从背景噪声中分离出来。实例研究表明,与四种已知的模型无关的方法相比,WDMP方法显著提高了短外显子的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved prediction of short exons via multiscale products
Exon is an important functional region of eukaryotic DNA sequence. Prediction of exons can help to understand the structure and function of protein. However, the issue of finding an efficient technique to detect the numbers and locations of short coding sequences automatically is an unsolved problem. In this work, a short exon prediction method based on multiscale products in B-spline wavelet domain is proposed. The proposed wavelet denoising and multiscale products-based technique (WDMP) for short exons prediction have the following three features. (1) A wavelet package denoising method is applied to smooth the DNA numerical sequences. (2) A new B-spline wavelet function is designed to extract the exon features in multiscale domain, so the effect of window length is avoided. In addition, this wavelet has a higher degree of freedom for curve design. (3) We multiply the adjacent coefficients to exploit the high inter-scale correlation of the exon data, while these correlation features are used to separate the exon signals from background noise. Compared with four well-known model-independent methods, case studies demonstrate that the proposed WDMP method helps to improve the prediction accuracy of short exons significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信