{"title":"相关性对(范围)风险价值的影响","authors":"C. Bernard, Corrado De Vecchi, S. Vanduffel","doi":"10.1080/03461238.2022.2139630","DOIUrl":null,"url":null,"abstract":"The assessment of portfolio risk is often explicitly (e.g. the Basel III square root formula) or implicitly (e.g. credit risk models) driven by the marginal distributions of the risky components and their correlations. We assess the extent by which such practice is prone to model error. In the case of n = 2 risks, we investigate under which conditions the unconstrained Value-at-Risk (VaR) bounds (which are the maximum and minimum VaR for when only the marginal distributions of the are known) coincide with the (constrained) VaR bounds when in addition one has information on some measure of dependence (e.g. Pearson correlation or Spearman's rho). We find that both bounds coincide if the measure of dependence takes value in an interval that we explicitly determine. For probability levels used in risk management practice, we show that using correlation information has typically no effect on the highest possible VaR whereas it can affect the lowest possible VaR. In the case of a general sum of risks, we derive Range Value-at-Risk (RVaR) bounds under an average correlation constraint and we show they are best-possible in the case of a sum of standard uniformly distributed risks.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of correlation on (Range) Value-at-Risk\",\"authors\":\"C. Bernard, Corrado De Vecchi, S. Vanduffel\",\"doi\":\"10.1080/03461238.2022.2139630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The assessment of portfolio risk is often explicitly (e.g. the Basel III square root formula) or implicitly (e.g. credit risk models) driven by the marginal distributions of the risky components and their correlations. We assess the extent by which such practice is prone to model error. In the case of n = 2 risks, we investigate under which conditions the unconstrained Value-at-Risk (VaR) bounds (which are the maximum and minimum VaR for when only the marginal distributions of the are known) coincide with the (constrained) VaR bounds when in addition one has information on some measure of dependence (e.g. Pearson correlation or Spearman's rho). We find that both bounds coincide if the measure of dependence takes value in an interval that we explicitly determine. For probability levels used in risk management practice, we show that using correlation information has typically no effect on the highest possible VaR whereas it can affect the lowest possible VaR. In the case of a general sum of risks, we derive Range Value-at-Risk (RVaR) bounds under an average correlation constraint and we show they are best-possible in the case of a sum of standard uniformly distributed risks.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/03461238.2022.2139630\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/03461238.2022.2139630","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The impact of correlation on (Range) Value-at-Risk
The assessment of portfolio risk is often explicitly (e.g. the Basel III square root formula) or implicitly (e.g. credit risk models) driven by the marginal distributions of the risky components and their correlations. We assess the extent by which such practice is prone to model error. In the case of n = 2 risks, we investigate under which conditions the unconstrained Value-at-Risk (VaR) bounds (which are the maximum and minimum VaR for when only the marginal distributions of the are known) coincide with the (constrained) VaR bounds when in addition one has information on some measure of dependence (e.g. Pearson correlation or Spearman's rho). We find that both bounds coincide if the measure of dependence takes value in an interval that we explicitly determine. For probability levels used in risk management practice, we show that using correlation information has typically no effect on the highest possible VaR whereas it can affect the lowest possible VaR. In the case of a general sum of risks, we derive Range Value-at-Risk (RVaR) bounds under an average correlation constraint and we show they are best-possible in the case of a sum of standard uniformly distributed risks.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.