SparkR:用Spark扩展R程序

S. Venkataraman, Zongheng Yang, Davies Liu, Eric Liang, H. Falaki, Xiangrui Meng, Reynold Xin, A. Ghodsi, M. Franklin, I. Stoica, M. Zaharia
{"title":"SparkR:用Spark扩展R程序","authors":"S. Venkataraman, Zongheng Yang, Davies Liu, Eric Liang, H. Falaki, Xiangrui Meng, Reynold Xin, A. Ghodsi, M. Franklin, I. Stoica, M. Zaharia","doi":"10.1145/2882903.2903740","DOIUrl":null,"url":null,"abstract":"R is a popular statistical programming language with a number of extensions that support data processing and machine learning tasks. However, interactive data analysis in R is usually limited as the R runtime is single threaded and can only process data sets that fit in a single machine's memory. We present SparkR, an R package that provides a frontend to Apache Spark and uses Spark's distributed computation engine to enable large scale data analysis from the R shell. We describe the main design goals of SparkR, discuss how the high-level DataFrame API enables scalable computation and present some of the key details of our implementation.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"70 8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"SparkR: Scaling R Programs with Spark\",\"authors\":\"S. Venkataraman, Zongheng Yang, Davies Liu, Eric Liang, H. Falaki, Xiangrui Meng, Reynold Xin, A. Ghodsi, M. Franklin, I. Stoica, M. Zaharia\",\"doi\":\"10.1145/2882903.2903740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"R is a popular statistical programming language with a number of extensions that support data processing and machine learning tasks. However, interactive data analysis in R is usually limited as the R runtime is single threaded and can only process data sets that fit in a single machine's memory. We present SparkR, an R package that provides a frontend to Apache Spark and uses Spark's distributed computation engine to enable large scale data analysis from the R shell. We describe the main design goals of SparkR, discuss how the high-level DataFrame API enables scalable computation and present some of the key details of our implementation.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":\"70 8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2903740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2903740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

R是一种流行的统计编程语言,具有许多支持数据处理和机器学习任务的扩展。然而,R中的交互式数据分析通常是有限的,因为R运行时是单线程的,只能处理适合单个机器内存的数据集。我们介绍了SparkR,一个R包,它为Apache Spark提供了一个前端,并使用Spark的分布式计算引擎从R shell中实现大规模数据分析。我们描述了SparkR的主要设计目标,讨论了高级DataFrame API如何支持可伸缩计算,并介绍了我们实现的一些关键细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SparkR: Scaling R Programs with Spark
R is a popular statistical programming language with a number of extensions that support data processing and machine learning tasks. However, interactive data analysis in R is usually limited as the R runtime is single threaded and can only process data sets that fit in a single machine's memory. We present SparkR, an R package that provides a frontend to Apache Spark and uses Spark's distributed computation engine to enable large scale data analysis from the R shell. We describe the main design goals of SparkR, discuss how the high-level DataFrame API enables scalable computation and present some of the key details of our implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信