点本原广义六边形、八边形和射影线性群

S. Glasby, Emilio Pierro, C. Praeger
{"title":"点本原广义六边形、八边形和射影线性群","authors":"S. Glasby, Emilio Pierro, C. Praeger","doi":"10.26493/1855-3974.2049.3DB","DOIUrl":null,"url":null,"abstract":"We discuss recent progress on the problem of classifying point-primitive generalised polygons. In the case of generalised hexagons and generalised octagons, this has reduced the problem to primitive actions of almost simple groups of Lie type. To illustrate how the natural geometry of these groups may be used in this study, we show that if $\\mathcal{S}$ is a finite thick generalised hexagon or octagon with $G \\leqslant{\\rm Aut}(\\mathcal{S})$ acting point-primitively and the socle of $G$ isomorphic to ${\\rm PSL}_n(q)$ where $n \\geqslant 2$, then the stabiliser of a point acts irreducibly on the natural module. We describe a strategy to prove that such a generalised hexagon or octagon $\\mathcal{S}$ does not exist.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Point-primitive generalised hexagons and octagons and projective linear groups\",\"authors\":\"S. Glasby, Emilio Pierro, C. Praeger\",\"doi\":\"10.26493/1855-3974.2049.3DB\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss recent progress on the problem of classifying point-primitive generalised polygons. In the case of generalised hexagons and generalised octagons, this has reduced the problem to primitive actions of almost simple groups of Lie type. To illustrate how the natural geometry of these groups may be used in this study, we show that if $\\\\mathcal{S}$ is a finite thick generalised hexagon or octagon with $G \\\\leqslant{\\\\rm Aut}(\\\\mathcal{S})$ acting point-primitively and the socle of $G$ isomorphic to ${\\\\rm PSL}_n(q)$ where $n \\\\geqslant 2$, then the stabiliser of a point acts irreducibly on the natural module. We describe a strategy to prove that such a generalised hexagon or octagon $\\\\mathcal{S}$ does not exist.\",\"PeriodicalId\":8402,\"journal\":{\"name\":\"Ars Math. Contemp.\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Math. Contemp.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2049.3DB\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2049.3DB","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

讨论了点基广义多边形分类问题的最新进展。在广义六边形和广义八边形的情况下,这将问题简化为李型的几乎简单群的原始动作。为了说明如何在本研究中使用这些群的自然几何,我们证明了如果$\mathcal{S}$是一个有限厚的广义六边形或八边形,具有$G \leqslant{\rm Aut}(\mathcal{S})$作用点基,并且$G$的基底同构于${\rm PSL}_n(q)$,其中$n \geqslant 2$,则点的稳定器不可约地作用于自然模上。我们描述了一种策略来证明这样的广义六边形或八边形$\mathcal{S}$不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Point-primitive generalised hexagons and octagons and projective linear groups
We discuss recent progress on the problem of classifying point-primitive generalised polygons. In the case of generalised hexagons and generalised octagons, this has reduced the problem to primitive actions of almost simple groups of Lie type. To illustrate how the natural geometry of these groups may be used in this study, we show that if $\mathcal{S}$ is a finite thick generalised hexagon or octagon with $G \leqslant{\rm Aut}(\mathcal{S})$ acting point-primitively and the socle of $G$ isomorphic to ${\rm PSL}_n(q)$ where $n \geqslant 2$, then the stabiliser of a point acts irreducibly on the natural module. We describe a strategy to prove that such a generalised hexagon or octagon $\mathcal{S}$ does not exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信