A. S. Olaniyan, Omolara Fatimah Bakre, M. A. Akanbi
{"title":"基于Heronian均值的二阶隐式龙格-库塔法求解常微分方程","authors":"A. S. Olaniyan, Omolara Fatimah Bakre, M. A. Akanbi","doi":"10.11648/j.pamj.20200905.11","DOIUrl":null,"url":null,"abstract":"In recent times, the use of different types of mean in the derivation of explicit Runge-Kutta methods had been on increase. Researchers have explored explicit Runge-Kutta methods derivation by using different types of mean such as geometric mean, harmonic mean, contra-harmonic mean, heronian mean to name but a few; as against the conventional explicit Runge-Kutta methods which was viewed as arithmetic mean. However, despite efforts to improve the derivation of explicit Runge-Kutta methods with use of other types of mean, none has deemed it fit to extend this notion to implicit Runge-Kutta methods. In this article, we present the use of heronian mean as a basis for the construction of implicit Runge-Kutta method in a way of improving the conventional method which is arithmetic mean based. Numerical results was conducted on ordinary differential equations which was compared with the conventional two-stage fourth order implicit Runge-Kutta (IRK4) method and two-stage third order diagonally implicit Runge-Kutta (DIRK3) method. The results presented confirmed that the new scheme performs better than these numerical methods. A better Qualitative properties using Dalquist test equation were established.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A 2-Stage Implicit Runge-Kutta Method Based on Heronian Mean for Solving Ordinary Differential Equations\",\"authors\":\"A. S. Olaniyan, Omolara Fatimah Bakre, M. A. Akanbi\",\"doi\":\"10.11648/j.pamj.20200905.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent times, the use of different types of mean in the derivation of explicit Runge-Kutta methods had been on increase. Researchers have explored explicit Runge-Kutta methods derivation by using different types of mean such as geometric mean, harmonic mean, contra-harmonic mean, heronian mean to name but a few; as against the conventional explicit Runge-Kutta methods which was viewed as arithmetic mean. However, despite efforts to improve the derivation of explicit Runge-Kutta methods with use of other types of mean, none has deemed it fit to extend this notion to implicit Runge-Kutta methods. In this article, we present the use of heronian mean as a basis for the construction of implicit Runge-Kutta method in a way of improving the conventional method which is arithmetic mean based. Numerical results was conducted on ordinary differential equations which was compared with the conventional two-stage fourth order implicit Runge-Kutta (IRK4) method and two-stage third order diagonally implicit Runge-Kutta (DIRK3) method. The results presented confirmed that the new scheme performs better than these numerical methods. A better Qualitative properties using Dalquist test equation were established.\",\"PeriodicalId\":46057,\"journal\":{\"name\":\"Italian Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.pamj.20200905.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.pamj.20200905.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A 2-Stage Implicit Runge-Kutta Method Based on Heronian Mean for Solving Ordinary Differential Equations
In recent times, the use of different types of mean in the derivation of explicit Runge-Kutta methods had been on increase. Researchers have explored explicit Runge-Kutta methods derivation by using different types of mean such as geometric mean, harmonic mean, contra-harmonic mean, heronian mean to name but a few; as against the conventional explicit Runge-Kutta methods which was viewed as arithmetic mean. However, despite efforts to improve the derivation of explicit Runge-Kutta methods with use of other types of mean, none has deemed it fit to extend this notion to implicit Runge-Kutta methods. In this article, we present the use of heronian mean as a basis for the construction of implicit Runge-Kutta method in a way of improving the conventional method which is arithmetic mean based. Numerical results was conducted on ordinary differential equations which was compared with the conventional two-stage fourth order implicit Runge-Kutta (IRK4) method and two-stage third order diagonally implicit Runge-Kutta (DIRK3) method. The results presented confirmed that the new scheme performs better than these numerical methods. A better Qualitative properties using Dalquist test equation were established.
期刊介绍:
The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.