基于同伦摄动法的非线性电磁振动能量采集器非瞬态优化设计

Q2 Engineering
Aboozar Dezhara
{"title":"基于同伦摄动法的非线性电磁振动能量采集器非瞬态优化设计","authors":"Aboozar Dezhara","doi":"10.1515/ehs-2022-0101","DOIUrl":null,"url":null,"abstract":"Abstract In this paper the coupled differential equations governing the vibration of nonlinear electromagnetic energy harvesters are solved by the homotopy perturbation method. The amplitudes of odd harmonics of displacement of the magnet, coil current, and load voltage are derived up to the 5th harmonic. The frequency response of output power is plotted and it peaks at the linear mechanical resonance frequency. It should be noted that the optimum design of coil and load parameters, optimum electromagnetic coupling coefficient, and optimum vibration frequency of the magnet attached to a non-linear spring resulted in a stationary or non-transient vibration. Paying insufficient attention to this point and using typical parameters instead of optimum ones will result in transient vibration. The research aims at a rigorous semi-analytical method on a nonlinear problem which has previously solely investigated by numerical or experimental method.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-transient optimum design of nonlinear electromagnetic vibration-based energy harvester using homotopy perturbation method\",\"authors\":\"Aboozar Dezhara\",\"doi\":\"10.1515/ehs-2022-0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper the coupled differential equations governing the vibration of nonlinear electromagnetic energy harvesters are solved by the homotopy perturbation method. The amplitudes of odd harmonics of displacement of the magnet, coil current, and load voltage are derived up to the 5th harmonic. The frequency response of output power is plotted and it peaks at the linear mechanical resonance frequency. It should be noted that the optimum design of coil and load parameters, optimum electromagnetic coupling coefficient, and optimum vibration frequency of the magnet attached to a non-linear spring resulted in a stationary or non-transient vibration. Paying insufficient attention to this point and using typical parameters instead of optimum ones will result in transient vibration. The research aims at a rigorous semi-analytical method on a nonlinear problem which has previously solely investigated by numerical or experimental method.\",\"PeriodicalId\":36885,\"journal\":{\"name\":\"Energy Harvesting and Systems\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Harvesting and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ehs-2022-0101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Harvesting and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ehs-2022-0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文用同伦摄动法求解了非线性电磁能量采集器振动的耦合微分方程。推导出磁体位移、线圈电流和负载电压的奇次谐波幅值直至五次谐波。输出功率的频率响应被绘制出来,它在线性机械共振频率处达到峰值。需要注意的是,线圈和负载参数的优化设计、电磁耦合系数的优化设计以及附着在非线性弹簧上的磁体的最优振动频率的优化设计导致了稳态或非瞬态振动。对这一点重视不够,采用典型参数代替最佳参数,会造成瞬态振动。本研究旨在对以往仅用数值或实验方法研究的非线性问题,提出一种严谨的半解析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-transient optimum design of nonlinear electromagnetic vibration-based energy harvester using homotopy perturbation method
Abstract In this paper the coupled differential equations governing the vibration of nonlinear electromagnetic energy harvesters are solved by the homotopy perturbation method. The amplitudes of odd harmonics of displacement of the magnet, coil current, and load voltage are derived up to the 5th harmonic. The frequency response of output power is plotted and it peaks at the linear mechanical resonance frequency. It should be noted that the optimum design of coil and load parameters, optimum electromagnetic coupling coefficient, and optimum vibration frequency of the magnet attached to a non-linear spring resulted in a stationary or non-transient vibration. Paying insufficient attention to this point and using typical parameters instead of optimum ones will result in transient vibration. The research aims at a rigorous semi-analytical method on a nonlinear problem which has previously solely investigated by numerical or experimental method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Harvesting and Systems
Energy Harvesting and Systems Energy-Energy Engineering and Power Technology
CiteScore
2.00
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信