多变量变异系数的最优自适应变样本量方案

K. W. Khaw, Xinying Chew, Ming Ha Lee, W. C. Yeong
{"title":"多变量变异系数的最优自适应变样本量方案","authors":"K. W. Khaw, Xinying Chew, Ming Ha Lee, W. C. Yeong","doi":"10.19139/SOIC-2310-5070-996","DOIUrl":null,"url":null,"abstract":"Development of an efficient process monitoring system has always received great attention. Previous studies revealed that the coefficient of variation (CV) is important in ensuring process quality, especially for monitoring a process where its process mean and variance are highly correlated. The fact that almost all industrial process monitoring involves a minimum of two or more related quality characteristics being monitored simultaneously, this paper incorporates the salient feature of the adaptive sample size VSS scheme into the standard multivariate CV (MCV) chart, called the VSS MCV chart. A Markov chain model is developed for the derivation of the chart’s performance measures, i.e the average run length (ARL), the standard deviation of the run length (SDRL), the average sample size (ASS), the average number of observations to signal (ANOS) and the expected average run length (EARL). The numerical comparison shows that the proposed chart prevails over the existing standard MCV chart for detecting small and moderate upward and downward MCV shifts.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Optimal Adaptive Variable Sample Size Scheme for the Multivariate Coefficient of Variation\",\"authors\":\"K. W. Khaw, Xinying Chew, Ming Ha Lee, W. C. Yeong\",\"doi\":\"10.19139/SOIC-2310-5070-996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of an efficient process monitoring system has always received great attention. Previous studies revealed that the coefficient of variation (CV) is important in ensuring process quality, especially for monitoring a process where its process mean and variance are highly correlated. The fact that almost all industrial process monitoring involves a minimum of two or more related quality characteristics being monitored simultaneously, this paper incorporates the salient feature of the adaptive sample size VSS scheme into the standard multivariate CV (MCV) chart, called the VSS MCV chart. A Markov chain model is developed for the derivation of the chart’s performance measures, i.e the average run length (ARL), the standard deviation of the run length (SDRL), the average sample size (ASS), the average number of observations to signal (ANOS) and the expected average run length (EARL). The numerical comparison shows that the proposed chart prevails over the existing standard MCV chart for detecting small and moderate upward and downward MCV shifts.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/SOIC-2310-5070-996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/SOIC-2310-5070-996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

开发高效的过程监测系统一直受到人们的高度重视。以往的研究表明,变异系数(CV)在保证过程质量方面具有重要意义,特别是在过程均值和方差高度相关的过程监控中。事实上,几乎所有的工业过程监控都涉及至少两个或更多相关的质量特征同时被监控,本文将自适应样本量VSS方案的显著特征纳入标准的多变量CV (MCV)图,称为VSS MCV图。建立了一个马尔可夫链模型,用于推导图表的性能度量,即平均运行长度(ARL),运行长度的标准差(SDRL),平均样本量(ASS),平均观测到的信号数(ANOS)和预期平均运行长度(EARL)。数值比较表明,本文提出的图在检测小、中度的上、下MCV位移方面优于现有的标准MCV图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimal Adaptive Variable Sample Size Scheme for the Multivariate Coefficient of Variation
Development of an efficient process monitoring system has always received great attention. Previous studies revealed that the coefficient of variation (CV) is important in ensuring process quality, especially for monitoring a process where its process mean and variance are highly correlated. The fact that almost all industrial process monitoring involves a minimum of two or more related quality characteristics being monitored simultaneously, this paper incorporates the salient feature of the adaptive sample size VSS scheme into the standard multivariate CV (MCV) chart, called the VSS MCV chart. A Markov chain model is developed for the derivation of the chart’s performance measures, i.e the average run length (ARL), the standard deviation of the run length (SDRL), the average sample size (ASS), the average number of observations to signal (ANOS) and the expected average run length (EARL). The numerical comparison shows that the proposed chart prevails over the existing standard MCV chart for detecting small and moderate upward and downward MCV shifts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信