大穆勒论文的一张信件叫做“对守旧派及守旧派的研究”

Vincent Alberge, Melkana Brakalova-Trevithick, Athanase Papadopoulos
{"title":"大穆勒论文的一张信件叫做“对守旧派及守旧派的研究”","authors":"Vincent Alberge, Melkana Brakalova-Trevithick, Athanase Papadopoulos","doi":"10.4171/203-1/26","DOIUrl":null,"url":null,"abstract":"This is a commentary on Teichm{\\\"u}ller's paper Unter-suchungen{\\\"u}ber konforme und quasikonforme Abbildungen (Inves-tigations on conformal and quasiconformal mappings) published in 1938. The paper contains fundamental results in conformal geometry , in particular a lemma, known as the Modulsatz, which insures the almost circularity of certain loci defined as complementary components of simply connected regions in the Riemann sphere, and another lemma, which we call the Main Lemma, which insures the circularity near infinity of the image of circles by a qua-siconformal map. The two results find wide applications in value distribution theory, where they allow the efficient use of moduli of doubly connected domains and of quasiconformal mappings. Te-ichm{\\\"u}ller's paper also contains a thorough development of the theory of conformal invariants of doubly connected domains.The final version of this paper will appear in Vol. VII of the \\emph{Handbook of Teichm{\\\"u}ller theory} (European Mathematical Society Publishing House, 2020).","PeriodicalId":12912,"journal":{"name":"Handbook of Teichmüller Theory, Volume VII","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Commentary on Teichmüller’s paper \\\"Untersuchungen über konforme und quasikonforme Abbildungen\\\"\",\"authors\":\"Vincent Alberge, Melkana Brakalova-Trevithick, Athanase Papadopoulos\",\"doi\":\"10.4171/203-1/26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a commentary on Teichm{\\\\\\\"u}ller's paper Unter-suchungen{\\\\\\\"u}ber konforme und quasikonforme Abbildungen (Inves-tigations on conformal and quasiconformal mappings) published in 1938. The paper contains fundamental results in conformal geometry , in particular a lemma, known as the Modulsatz, which insures the almost circularity of certain loci defined as complementary components of simply connected regions in the Riemann sphere, and another lemma, which we call the Main Lemma, which insures the circularity near infinity of the image of circles by a qua-siconformal map. The two results find wide applications in value distribution theory, where they allow the efficient use of moduli of doubly connected domains and of quasiconformal mappings. Te-ichm{\\\\\\\"u}ller's paper also contains a thorough development of the theory of conformal invariants of doubly connected domains.The final version of this paper will appear in Vol. VII of the \\\\emph{Handbook of Teichm{\\\\\\\"u}ller theory} (European Mathematical Society Publishing House, 2020).\",\"PeriodicalId\":12912,\"journal\":{\"name\":\"Handbook of Teichmüller Theory, Volume VII\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Teichmüller Theory, Volume VII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/203-1/26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Teichmüller Theory, Volume VII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/203-1/26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

这是对teichmller在1938年发表的论文《共形映射和拟共形映射的研究》的评论。本文包含共形几何的基本结果,特别是一个被称为Modulsatz的引理,它保证了在黎曼球中被定义为单连通区域的互补分量的某些轨迹的几乎圆,以及另一个引理,我们称之为主引理,它保证了一个拟共形映射的圆像的近无穷圆。这两个结果在值分布理论中得到了广泛的应用,它们允许有效地利用双连通域和拟共形映射的模。te - ichm ller的论文{还}包含了双连通域的共形不变量理论的全面发展。本文的最终版本将出现在《teichm{}{}\emph{勒理论手册》第七卷(欧洲{数学}学会出版社},2020)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Commentary on Teichmüller’s paper "Untersuchungen über konforme und quasikonforme Abbildungen"
This is a commentary on Teichm{\"u}ller's paper Unter-suchungen{\"u}ber konforme und quasikonforme Abbildungen (Inves-tigations on conformal and quasiconformal mappings) published in 1938. The paper contains fundamental results in conformal geometry , in particular a lemma, known as the Modulsatz, which insures the almost circularity of certain loci defined as complementary components of simply connected regions in the Riemann sphere, and another lemma, which we call the Main Lemma, which insures the circularity near infinity of the image of circles by a qua-siconformal map. The two results find wide applications in value distribution theory, where they allow the efficient use of moduli of doubly connected domains and of quasiconformal mappings. Te-ichm{\"u}ller's paper also contains a thorough development of the theory of conformal invariants of doubly connected domains.The final version of this paper will appear in Vol. VII of the \emph{Handbook of Teichm{\"u}ller theory} (European Mathematical Society Publishing House, 2020).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信