内径和雷诺数对环形射流再循环区的影响

Q3 Chemical Engineering
M. Habib, Sahnoun Rachid, Drai Ismail
{"title":"内径和雷诺数对环形射流再循环区的影响","authors":"M. Habib, Sahnoun Rachid, Drai Ismail","doi":"10.2478/ijame-2022-0021","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we focus on the effect of the inner diameter and Reynolds number on the recirculation zone in an annular jet flow with numerical simulation by resolving the Reynolds-averaged Navier-Stokes equations with the first closed model of turbulence k-epsilon. The annular jet plays an essential role in stabilizing the flame in the burner which is used in many industrial applications. The annular jet is characterized by the inner and outer diameter. In this study, three different inner diameters are adopted with constant width of the annular jet. We adopted also three different values of the Reynolds number show the effect of the Reynolds number on the recirculation zone. The simulation is realized by a CFD code which uses the finite element method. The results obtained from this study are in good agreement with the experimental data. Two recirculation zones are shown; a large recirculation zone at the outlet of the flow and a small recirculation zone just near the injection generated by the annular flow and the inner diameter Di; it is observed that the size of the recirculation zone increases when the inner diameter increases and the length of the recirculation zone depends only on the inner diameter. This recirculation zone is also affected by the Reynolds number with a very low variation of the recirculation length.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"109 1","pages":"87 - 97"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Inner Diameter and Reynolds Number on the Recirculation Zone in Annular Jet Flow\",\"authors\":\"M. Habib, Sahnoun Rachid, Drai Ismail\",\"doi\":\"10.2478/ijame-2022-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we focus on the effect of the inner diameter and Reynolds number on the recirculation zone in an annular jet flow with numerical simulation by resolving the Reynolds-averaged Navier-Stokes equations with the first closed model of turbulence k-epsilon. The annular jet plays an essential role in stabilizing the flame in the burner which is used in many industrial applications. The annular jet is characterized by the inner and outer diameter. In this study, three different inner diameters are adopted with constant width of the annular jet. We adopted also three different values of the Reynolds number show the effect of the Reynolds number on the recirculation zone. The simulation is realized by a CFD code which uses the finite element method. The results obtained from this study are in good agreement with the experimental data. Two recirculation zones are shown; a large recirculation zone at the outlet of the flow and a small recirculation zone just near the injection generated by the annular flow and the inner diameter Di; it is observed that the size of the recirculation zone increases when the inner diameter increases and the length of the recirculation zone depends only on the inner diameter. This recirculation zone is also affected by the Reynolds number with a very low variation of the recirculation length.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"109 1\",\"pages\":\"87 - 97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ijame-2022-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijame-2022-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文采用k-epsilon湍流第一闭合模型,通过求解雷诺数-平均Navier-Stokes方程,研究了内径和雷诺数对环形射流再循环区的影响。在许多工业应用中,环形射流在稳定燃烧器中的火焰方面起着至关重要的作用。环形射流的特点是内径和外径。本研究采用三种不同的内径,环形射流宽度恒定。我们还采用了三种不同的雷诺数值来显示雷诺数对再循环区的影响。仿真是通过采用有限元方法的CFD程序实现的。所得结果与实验数据吻合较好。图中显示了两个再循环区;流动出口有较大的再循环区,环形流动和内径Di产生的喷注附近有较小的再循环区;观察到,随着内径的增大,再循环区的大小也随之增大,而再循环区的长度只与内径有关。该再循环区也受雷诺数的影响,而再循环长度的变化非常小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of the Inner Diameter and Reynolds Number on the Recirculation Zone in Annular Jet Flow
Abstract In this paper, we focus on the effect of the inner diameter and Reynolds number on the recirculation zone in an annular jet flow with numerical simulation by resolving the Reynolds-averaged Navier-Stokes equations with the first closed model of turbulence k-epsilon. The annular jet plays an essential role in stabilizing the flame in the burner which is used in many industrial applications. The annular jet is characterized by the inner and outer diameter. In this study, three different inner diameters are adopted with constant width of the annular jet. We adopted also three different values of the Reynolds number show the effect of the Reynolds number on the recirculation zone. The simulation is realized by a CFD code which uses the finite element method. The results obtained from this study are in good agreement with the experimental data. Two recirculation zones are shown; a large recirculation zone at the outlet of the flow and a small recirculation zone just near the injection generated by the annular flow and the inner diameter Di; it is observed that the size of the recirculation zone increases when the inner diameter increases and the length of the recirculation zone depends only on the inner diameter. This recirculation zone is also affected by the Reynolds number with a very low variation of the recirculation length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Mechanics and Engineering
International Journal of Applied Mechanics and Engineering Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
45
审稿时长
35 weeks
期刊介绍: INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信