环境大数据在农业灾害管理中的作用与影响

Shuyu Chen
{"title":"环境大数据在农业灾害管理中的作用与影响","authors":"Shuyu Chen","doi":"10.1080/09064710.2021.1959634","DOIUrl":null,"url":null,"abstract":"ABSTRACT In order to improve the effect of agricultural disaster management, this paper uses environmental big data technology to analyse historical agricultural disaster data and analyse the role and impact of this technology in agricultural disaster management. How to efficiently use the effective resources in the meteorological big data to optimise the mining effect is an important issue in the assessment of agrometeorological disasters. Parallel information entropy attribute reduction algorithm can effectively reduce the scale of research data and increase the rate of data preprocessing. The classification assessment and early warning of agrometeorological disasters involve data mining classification prediction technology. Unlike most classification prediction algorithms, KNN classification is particularly suitable for application to meteorological data sets with cross-class domains and can accelerate the classification and prediction speed of big data in the parallel processing architecture. Finally, this paper designs experiments to verify the method proposed in this paper. The results of data analysis show that the model constructed in this paper has a certain effect.","PeriodicalId":7094,"journal":{"name":"Acta Agriculturae Scandinavica, Section B — Soil & Plant Science","volume":"42 1","pages":"907 - 919"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role and impact of environmental big data in agricultural disaster management\",\"authors\":\"Shuyu Chen\",\"doi\":\"10.1080/09064710.2021.1959634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In order to improve the effect of agricultural disaster management, this paper uses environmental big data technology to analyse historical agricultural disaster data and analyse the role and impact of this technology in agricultural disaster management. How to efficiently use the effective resources in the meteorological big data to optimise the mining effect is an important issue in the assessment of agrometeorological disasters. Parallel information entropy attribute reduction algorithm can effectively reduce the scale of research data and increase the rate of data preprocessing. The classification assessment and early warning of agrometeorological disasters involve data mining classification prediction technology. Unlike most classification prediction algorithms, KNN classification is particularly suitable for application to meteorological data sets with cross-class domains and can accelerate the classification and prediction speed of big data in the parallel processing architecture. Finally, this paper designs experiments to verify the method proposed in this paper. The results of data analysis show that the model constructed in this paper has a certain effect.\",\"PeriodicalId\":7094,\"journal\":{\"name\":\"Acta Agriculturae Scandinavica, Section B — Soil & Plant Science\",\"volume\":\"42 1\",\"pages\":\"907 - 919\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Agriculturae Scandinavica, Section B — Soil & Plant Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09064710.2021.1959634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Agriculturae Scandinavica, Section B — Soil & Plant Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09064710.2021.1959634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高农业灾害管理的效果,本文利用环境大数据技术对历史农业灾害数据进行分析,分析该技术在农业灾害管理中的作用和影响。如何高效利用气象大数据中的有效资源,优化挖掘效果,是农业气象灾害评估中的一个重要问题。并行信息熵属性约简算法可以有效地减少研究数据的规模,提高数据预处理的速度。农业气象灾害分类评估与预警涉及到数据挖掘分类预测技术。与大多数分类预测算法不同,KNN分类特别适合应用于具有跨类域的气象数据集,可以在并行处理架构下加快大数据的分类和预测速度。最后,本文设计了实验来验证本文提出的方法。数据分析结果表明,本文所构建的模型具有一定的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role and impact of environmental big data in agricultural disaster management
ABSTRACT In order to improve the effect of agricultural disaster management, this paper uses environmental big data technology to analyse historical agricultural disaster data and analyse the role and impact of this technology in agricultural disaster management. How to efficiently use the effective resources in the meteorological big data to optimise the mining effect is an important issue in the assessment of agrometeorological disasters. Parallel information entropy attribute reduction algorithm can effectively reduce the scale of research data and increase the rate of data preprocessing. The classification assessment and early warning of agrometeorological disasters involve data mining classification prediction technology. Unlike most classification prediction algorithms, KNN classification is particularly suitable for application to meteorological data sets with cross-class domains and can accelerate the classification and prediction speed of big data in the parallel processing architecture. Finally, this paper designs experiments to verify the method proposed in this paper. The results of data analysis show that the model constructed in this paper has a certain effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信