列维平坦世界:局部理论综述

IF 0.5 Q3 MATHEMATICS
Sukhov Alexandre
{"title":"列维平坦世界:局部理论综述","authors":"Sukhov Alexandre","doi":"10.13108/2017-9-3-172","DOIUrl":null,"url":null,"abstract":"This expository paper concerns local properties of Levi-flat real analytic manifolds with singularities. Levi-flat manifolds arise naturally in Complex Geometry and Foliation Theory. In many cases (global) compact Levi-flat manifolds without singularities do not exist. These global obstructions make natural the study of Levi-flat objects with singularities because they always exist. The present expository paper deals with some recent results on local geometry of Levi-flat singularities. One of the main questions concerns an extension of the Levi foliation as a holomorphic foliation to a full neighborhood of singularity. It turns out that in general such extension does not exist. Nevertheless, the Levi foliation always extends as a holomorphic web (a foliation with branching) near a non-dicritical singularity. We also present an efficient criterion characterizing these singularities.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"24 1","pages":"172-185"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Levi-flat world: a survey of local theory\",\"authors\":\"Sukhov Alexandre\",\"doi\":\"10.13108/2017-9-3-172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This expository paper concerns local properties of Levi-flat real analytic manifolds with singularities. Levi-flat manifolds arise naturally in Complex Geometry and Foliation Theory. In many cases (global) compact Levi-flat manifolds without singularities do not exist. These global obstructions make natural the study of Levi-flat objects with singularities because they always exist. The present expository paper deals with some recent results on local geometry of Levi-flat singularities. One of the main questions concerns an extension of the Levi foliation as a holomorphic foliation to a full neighborhood of singularity. It turns out that in general such extension does not exist. Nevertheless, the Levi foliation always extends as a holomorphic web (a foliation with branching) near a non-dicritical singularity. We also present an efficient criterion characterizing these singularities.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"24 1\",\"pages\":\"172-185\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2017-9-3-172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-3-172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了具有奇异点的列维平面实解析流形的局部性质。李维平面流形在复杂几何和叶理理论中自然出现。在许多情况下,没有奇点的(全局)紧致列维平坦流形不存在。这些全局障碍使得研究具有奇点的列维平面物体变得很自然,因为它们总是存在的。本文讨论了最近关于李维平坦奇点局部几何的一些结果。其中一个主要问题是将李维叶作为全纯叶扩展到奇点的满邻域。一般来说,这样的延伸是不存在的。然而,李维叶在非临界奇点附近总是以全纯网(有分枝的叶)的形式展开。我们还提出了表征这些奇异点的有效判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Levi-flat world: a survey of local theory
This expository paper concerns local properties of Levi-flat real analytic manifolds with singularities. Levi-flat manifolds arise naturally in Complex Geometry and Foliation Theory. In many cases (global) compact Levi-flat manifolds without singularities do not exist. These global obstructions make natural the study of Levi-flat objects with singularities because they always exist. The present expository paper deals with some recent results on local geometry of Levi-flat singularities. One of the main questions concerns an extension of the Levi foliation as a holomorphic foliation to a full neighborhood of singularity. It turns out that in general such extension does not exist. Nevertheless, the Levi foliation always extends as a holomorphic web (a foliation with branching) near a non-dicritical singularity. We also present an efficient criterion characterizing these singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信