新的双参数精确惩罚函数的平滑逼近

Jing Qiu, Jiguo Yu, Shujun Lian
{"title":"新的双参数精确惩罚函数的平滑逼近","authors":"Jing Qiu, Jiguo Yu, Shujun Lian","doi":"10.1142/S0217595921400108","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new non-smooth penalty function with two parameters for nonlinear inequality constrained optimization problems. And we propose a twice continuously differentiable function which is smoothing approximation to the non-smooth penalty function and define the corresponding smoothed penalty problem. A global solution of the smoothed penalty problem is proved to be an approximation global solution of the non-smooth penalty problem. Based on the smoothed penalty function, we develop an algorithm and prove that the sequence generated by the algorithm can converge to the optimal solution of the original problem.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":"24 1","pages":"2140010:1-2140010:19"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smoothing Approximation to the New Exact Penalty Function with Two Parameters\",\"authors\":\"Jing Qiu, Jiguo Yu, Shujun Lian\",\"doi\":\"10.1142/S0217595921400108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new non-smooth penalty function with two parameters for nonlinear inequality constrained optimization problems. And we propose a twice continuously differentiable function which is smoothing approximation to the non-smooth penalty function and define the corresponding smoothed penalty problem. A global solution of the smoothed penalty problem is proved to be an approximation global solution of the non-smooth penalty problem. Based on the smoothed penalty function, we develop an algorithm and prove that the sequence generated by the algorithm can converge to the optimal solution of the original problem.\",\"PeriodicalId\":8478,\"journal\":{\"name\":\"Asia Pac. J. Oper. Res.\",\"volume\":\"24 1\",\"pages\":\"2140010:1-2140010:19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pac. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217595921400108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217595921400108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对非线性不等式约束优化问题,提出了一种新的双参数非光滑惩罚函数。提出了一种二阶连续可微函数,它是非光滑惩罚函数的光滑逼近,并定义了相应的光滑惩罚问题。证明了光滑惩罚问题的一个全局解是非光滑惩罚问题的一个近似全局解。在光滑罚函数的基础上,提出了一种算法,并证明了该算法生成的序列收敛于原问题的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smoothing Approximation to the New Exact Penalty Function with Two Parameters
In this paper, we propose a new non-smooth penalty function with two parameters for nonlinear inequality constrained optimization problems. And we propose a twice continuously differentiable function which is smoothing approximation to the non-smooth penalty function and define the corresponding smoothed penalty problem. A global solution of the smoothed penalty problem is proved to be an approximation global solution of the non-smooth penalty problem. Based on the smoothed penalty function, we develop an algorithm and prove that the sequence generated by the algorithm can converge to the optimal solution of the original problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信