{"title":"媒体宣传项目对COVID-19大流行疾病传播影响的建模与分析","authors":"Fekadu Tadege Kobe","doi":"10.11648/j.mcs.20200505.12","DOIUrl":null,"url":null,"abstract":"This paper proposes and analyses a basic deterministic mathematical model to investigate Modeling and Analysis of effect of awareness program by media on the spread COVID-19 Pandemic Disease. The model has seven non-linear differential equations, which describe the effects of awareness programs by media on the spread of COVID-19 Pandemic diseases. Analytical study carried out to investigate the model analysis and existence of stability of system, given threshold parameters known as the basic reproduction number, which obtained using next generation matrix method. The equilibrium of COVID 19 models is determined. In addition to having a disease-free equilibrium, which is globally asymptotically stable when the basic reproduction number less than one, COVID 19 model manifest one's possession of (a quality of) the phenomenon of backward bifurcation where a stable disease-free equilibrium co-exists (at the same time) with a stable endemic equilibrium for a certain range of associated reproduction number less than one. The analysis and simulation results of the model suggested that the most effective strategies for controlling or eradicating the spread of COVID 19 pandemic were suggest using that awareness programs through the media campaigning are helpful in decreasing the spread of COVID 19 Pandemic diseases by isolating a fraction of susceptible from infective.","PeriodicalId":45105,"journal":{"name":"Mathematics in Computer Science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modelling and Analysis of Effect of Awareness Programs by Media on the Spread of COVID-19 Pandemic Disease\",\"authors\":\"Fekadu Tadege Kobe\",\"doi\":\"10.11648/j.mcs.20200505.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes and analyses a basic deterministic mathematical model to investigate Modeling and Analysis of effect of awareness program by media on the spread COVID-19 Pandemic Disease. The model has seven non-linear differential equations, which describe the effects of awareness programs by media on the spread of COVID-19 Pandemic diseases. Analytical study carried out to investigate the model analysis and existence of stability of system, given threshold parameters known as the basic reproduction number, which obtained using next generation matrix method. The equilibrium of COVID 19 models is determined. In addition to having a disease-free equilibrium, which is globally asymptotically stable when the basic reproduction number less than one, COVID 19 model manifest one's possession of (a quality of) the phenomenon of backward bifurcation where a stable disease-free equilibrium co-exists (at the same time) with a stable endemic equilibrium for a certain range of associated reproduction number less than one. The analysis and simulation results of the model suggested that the most effective strategies for controlling or eradicating the spread of COVID 19 pandemic were suggest using that awareness programs through the media campaigning are helpful in decreasing the spread of COVID 19 Pandemic diseases by isolating a fraction of susceptible from infective.\",\"PeriodicalId\":45105,\"journal\":{\"name\":\"Mathematics in Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.mcs.20200505.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.mcs.20200505.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Modelling and Analysis of Effect of Awareness Programs by Media on the Spread of COVID-19 Pandemic Disease
This paper proposes and analyses a basic deterministic mathematical model to investigate Modeling and Analysis of effect of awareness program by media on the spread COVID-19 Pandemic Disease. The model has seven non-linear differential equations, which describe the effects of awareness programs by media on the spread of COVID-19 Pandemic diseases. Analytical study carried out to investigate the model analysis and existence of stability of system, given threshold parameters known as the basic reproduction number, which obtained using next generation matrix method. The equilibrium of COVID 19 models is determined. In addition to having a disease-free equilibrium, which is globally asymptotically stable when the basic reproduction number less than one, COVID 19 model manifest one's possession of (a quality of) the phenomenon of backward bifurcation where a stable disease-free equilibrium co-exists (at the same time) with a stable endemic equilibrium for a certain range of associated reproduction number less than one. The analysis and simulation results of the model suggested that the most effective strategies for controlling or eradicating the spread of COVID 19 pandemic were suggest using that awareness programs through the media campaigning are helpful in decreasing the spread of COVID 19 Pandemic diseases by isolating a fraction of susceptible from infective.
期刊介绍:
Mathematics in Computer Science publishes high-quality original research papers on the development of theories and methods for computer and information sciences, the design, implementation, and analysis of algorithms and software tools for mathematical computation and reasoning, and the integration of mathematics and computer science for scientific and engineering applications. Insightful survey articles may be submitted for publication by invitation. As one of its distinct features, the journal publishes mainly special issues on carefully selected topics, reflecting the trends of research and development in the broad area of mathematics in computer science. Submission of proposals for special issues is welcome.