网上房源信息告诉我们关于房地产市场的什么?

M. Loberto, Andrea Luciani, Marco Pangallo
{"title":"网上房源信息告诉我们关于房地产市场的什么?","authors":"M. Loberto, Andrea Luciani, Marco Pangallo","doi":"10.2139/ssrn.3176962","DOIUrl":null,"url":null,"abstract":"Traditional data sources for the analysis of housing markets show several limitations, that recently started to be overcome using data coming from housing sales advertisements (ads) websites. In this paper, using a large dataset of ads in Italy, we provide the first comprehensive analysis of the problems and potential of these data. The main problem is that multiple ads (\"duplicates\") can correspond to the same housing unit. We show that this issue is mainly caused by sellers' attempt to increase visibility of their listings. Duplicates lead to misrepresentation of the volume and composition of housing supply, but this bias can be corrected by identifying duplicates with machine learning tools. We then focus on the potential of these data. We show that the timeliness, granularity, and online nature of these data allow monitoring of housing demand, supply and liquidity, and that the (asking) prices posted on the website can be more informative than transaction prices.","PeriodicalId":21047,"journal":{"name":"Real Estate eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"What Do Online Listings Tell Us About the Housing Market?\",\"authors\":\"M. Loberto, Andrea Luciani, Marco Pangallo\",\"doi\":\"10.2139/ssrn.3176962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional data sources for the analysis of housing markets show several limitations, that recently started to be overcome using data coming from housing sales advertisements (ads) websites. In this paper, using a large dataset of ads in Italy, we provide the first comprehensive analysis of the problems and potential of these data. The main problem is that multiple ads (\\\"duplicates\\\") can correspond to the same housing unit. We show that this issue is mainly caused by sellers' attempt to increase visibility of their listings. Duplicates lead to misrepresentation of the volume and composition of housing supply, but this bias can be corrected by identifying duplicates with machine learning tools. We then focus on the potential of these data. We show that the timeliness, granularity, and online nature of these data allow monitoring of housing demand, supply and liquidity, and that the (asking) prices posted on the website can be more informative than transaction prices.\",\"PeriodicalId\":21047,\"journal\":{\"name\":\"Real Estate eJournal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Estate eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3176962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Estate eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3176962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

传统的住房市场分析数据来源显示出一些局限性,最近开始使用来自住房销售广告网站的数据来克服这些局限性。在本文中,我们使用意大利的大型广告数据集,首次对这些数据的问题和潜力进行了全面分析。主要问题是,多个广告(“重复”)可能对应于相同的住房单元。我们发现,这一问题主要是由于卖家试图增加其商品的可见性。重复会导致对住房供应数量和组成的歪曲,但这种偏见可以通过使用机器学习工具识别重复来纠正。然后我们关注这些数据的潜力。我们表明,这些数据的及时性、粒度和在线性质允许对住房需求、供应和流动性进行监测,并且网站上公布的(要价)价格可以比交易价格提供更多信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What Do Online Listings Tell Us About the Housing Market?
Traditional data sources for the analysis of housing markets show several limitations, that recently started to be overcome using data coming from housing sales advertisements (ads) websites. In this paper, using a large dataset of ads in Italy, we provide the first comprehensive analysis of the problems and potential of these data. The main problem is that multiple ads ("duplicates") can correspond to the same housing unit. We show that this issue is mainly caused by sellers' attempt to increase visibility of their listings. Duplicates lead to misrepresentation of the volume and composition of housing supply, but this bias can be corrected by identifying duplicates with machine learning tools. We then focus on the potential of these data. We show that the timeliness, granularity, and online nature of these data allow monitoring of housing demand, supply and liquidity, and that the (asking) prices posted on the website can be more informative than transaction prices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信