{"title":"超声微设备中颗粒分离的研究","authors":"Hui Yang, Hang Guo","doi":"10.1109/ULTSYM.2007.401","DOIUrl":null,"url":null,"abstract":"In this paper, a new MEMS device that can separate microparticles on-chip by the use of bulk-mode excited membrane vibration is proposed, designed and microfabricated. By starting from the one-dimensional analytical mode of forces acting on particles,the force for ultrasonically separating particles is profoundly studied, and finite element method in ANSYS is used to analyze the vibration modes, the acoustic field and flow field in the microdevice due to the membrane vibration. With these analyses, we obtain the ultrasonic radiation force acting on different kinds of particles in the water, blood plasma and milk medium when the microdevice vibrates at different frequencies and then study their separation.","PeriodicalId":6355,"journal":{"name":"2007 IEEE Ultrasonics Symposium Proceedings","volume":"18 1","pages":"1594-1597"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"P2E-2 Study of Particles Separation in the Ultrasonic Microdevice\",\"authors\":\"Hui Yang, Hang Guo\",\"doi\":\"10.1109/ULTSYM.2007.401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new MEMS device that can separate microparticles on-chip by the use of bulk-mode excited membrane vibration is proposed, designed and microfabricated. By starting from the one-dimensional analytical mode of forces acting on particles,the force for ultrasonically separating particles is profoundly studied, and finite element method in ANSYS is used to analyze the vibration modes, the acoustic field and flow field in the microdevice due to the membrane vibration. With these analyses, we obtain the ultrasonic radiation force acting on different kinds of particles in the water, blood plasma and milk medium when the microdevice vibrates at different frequencies and then study their separation.\",\"PeriodicalId\":6355,\"journal\":{\"name\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"volume\":\"18 1\",\"pages\":\"1594-1597\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2007.401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Ultrasonics Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2007.401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
P2E-2 Study of Particles Separation in the Ultrasonic Microdevice
In this paper, a new MEMS device that can separate microparticles on-chip by the use of bulk-mode excited membrane vibration is proposed, designed and microfabricated. By starting from the one-dimensional analytical mode of forces acting on particles,the force for ultrasonically separating particles is profoundly studied, and finite element method in ANSYS is used to analyze the vibration modes, the acoustic field and flow field in the microdevice due to the membrane vibration. With these analyses, we obtain the ultrasonic radiation force acting on different kinds of particles in the water, blood plasma and milk medium when the microdevice vibrates at different frequencies and then study their separation.