基于统计学习的元启发式参数微调方法

IF 0.7 4区 数学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Laura Calvet, A. Juan, C. Serrat, Jana Ries
{"title":"基于统计学习的元启发式参数微调方法","authors":"Laura Calvet, A. Juan, C. Serrat, Jana Ries","doi":"10.2436/20.8080.02.41","DOIUrl":null,"url":null,"abstract":"Metaheuristics are approximation methods used to solve combinatorial optimization problems. Their performance usually depends on a set of parameters that need to be adjusted. The selectionof appropriate parameter values causes a loss of efficiency, as it requires time, and advanced analytical and problem-specific skills. This paper provides an overview of the principal approaches to tackle the Parameter Setting Problem, focusing on the statistical procedures employed so far by the scientific community. In addition, a novel methodology is proposed, which is tested using an already existing algorithm for solving the Multi-Depot Vehicle Routing Problem.","PeriodicalId":49497,"journal":{"name":"Sort-Statistics and Operations Research Transactions","volume":"82 1","pages":"201-224"},"PeriodicalIF":0.7000,"publicationDate":"2016-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A statistical learning based approach for parameter fine-tuning of metaheuristics\",\"authors\":\"Laura Calvet, A. Juan, C. Serrat, Jana Ries\",\"doi\":\"10.2436/20.8080.02.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metaheuristics are approximation methods used to solve combinatorial optimization problems. Their performance usually depends on a set of parameters that need to be adjusted. The selectionof appropriate parameter values causes a loss of efficiency, as it requires time, and advanced analytical and problem-specific skills. This paper provides an overview of the principal approaches to tackle the Parameter Setting Problem, focusing on the statistical procedures employed so far by the scientific community. In addition, a novel methodology is proposed, which is tested using an already existing algorithm for solving the Multi-Depot Vehicle Routing Problem.\",\"PeriodicalId\":49497,\"journal\":{\"name\":\"Sort-Statistics and Operations Research Transactions\",\"volume\":\"82 1\",\"pages\":\"201-224\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2016-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sort-Statistics and Operations Research Transactions\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2436/20.8080.02.41\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sort-Statistics and Operations Research Transactions","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2436/20.8080.02.41","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 28

摘要

元启发式是用于解决组合优化问题的近似方法。它们的性能通常取决于一组需要调整的参数。选择合适的参数值会导致效率的降低,因为它需要时间、高级分析和特定问题的技能。本文概述了解决参数设置问题的主要方法,重点介绍了科学界迄今为止采用的统计程序。此外,提出了一种新的方法,并利用已有的算法对该方法进行了测试,以解决多车场车辆路线问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A statistical learning based approach for parameter fine-tuning of metaheuristics
Metaheuristics are approximation methods used to solve combinatorial optimization problems. Their performance usually depends on a set of parameters that need to be adjusted. The selectionof appropriate parameter values causes a loss of efficiency, as it requires time, and advanced analytical and problem-specific skills. This paper provides an overview of the principal approaches to tackle the Parameter Setting Problem, focusing on the statistical procedures employed so far by the scientific community. In addition, a novel methodology is proposed, which is tested using an already existing algorithm for solving the Multi-Depot Vehicle Routing Problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sort-Statistics and Operations Research Transactions
Sort-Statistics and Operations Research Transactions 管理科学-统计学与概率论
CiteScore
3.10
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: SORT (Statistics and Operations Research Transactions) —formerly Qüestiió— is an international journal launched in 2003. It is published twice-yearly, in English, by the Statistical Institute of Catalonia (Idescat). The journal is co-edited by the Universitat Politècnica de Catalunya, Universitat de Barcelona, Universitat Autonòma de Barcelona, Universitat de Girona, Universitat Pompeu Fabra i Universitat de Lleida, with the co-operation of the Spanish Section of the International Biometric Society and the Catalan Statistical Society. SORT promotes the publication of original articles of a methodological or applied nature or motivated by an applied problem in statistics, operations research, official statistics or biometrics as well as book reviews. We encourage authors to include an example of a real data set in their manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信