基于参数马尔可夫链综合的鲁棒软件系统设计

R. Calinescu, Milan Ceska, Simos Gerasimou, M. Kwiatkowska, Nicola Paoletti
{"title":"基于参数马尔可夫链综合的鲁棒软件系统设计","authors":"R. Calinescu, Milan Ceska, Simos Gerasimou, M. Kwiatkowska, Nicola Paoletti","doi":"10.1109/ICSA.2017.16","DOIUrl":null,"url":null,"abstract":"We present a method for the synthesis of software system designs that satisfy strict quality requirements, are Pareto-optimal with respect to a set of quality optimisation criteria, and are robust to variations in the system parameters. To this end, we model the design space of the system under development as a parametric continuous-time Markov chain (pCTMC) with discrete and continuous parameters that correspond to alternative system architectures and to the ranges of possible values for configuration parameters, respectively. Given this pCTMC and required tolerance levels for the configuration parameters, our method produces a sensitivity-aware Pareto-optimal set of designs, which allows the modeller to inspect the ranges of quality attributes induced by these tolerances, thus enabling the effective selection of robust designs. Through application to two systems from different domains, we demonstrate the ability of our method to synthesise robust designs with a wide spectrum of useful tradeoffs between quality attributes and sensitivity.","PeriodicalId":6599,"journal":{"name":"2017 IEEE International Conference on Software Architecture (ICSA)","volume":"75 1","pages":"131-140"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Designing Robust Software Systems through Parametric Markov Chain Synthesis\",\"authors\":\"R. Calinescu, Milan Ceska, Simos Gerasimou, M. Kwiatkowska, Nicola Paoletti\",\"doi\":\"10.1109/ICSA.2017.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for the synthesis of software system designs that satisfy strict quality requirements, are Pareto-optimal with respect to a set of quality optimisation criteria, and are robust to variations in the system parameters. To this end, we model the design space of the system under development as a parametric continuous-time Markov chain (pCTMC) with discrete and continuous parameters that correspond to alternative system architectures and to the ranges of possible values for configuration parameters, respectively. Given this pCTMC and required tolerance levels for the configuration parameters, our method produces a sensitivity-aware Pareto-optimal set of designs, which allows the modeller to inspect the ranges of quality attributes induced by these tolerances, thus enabling the effective selection of robust designs. Through application to two systems from different domains, we demonstrate the ability of our method to synthesise robust designs with a wide spectrum of useful tradeoffs between quality attributes and sensitivity.\",\"PeriodicalId\":6599,\"journal\":{\"name\":\"2017 IEEE International Conference on Software Architecture (ICSA)\",\"volume\":\"75 1\",\"pages\":\"131-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Software Architecture (ICSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSA.2017.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Software Architecture (ICSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSA.2017.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

我们提出了一种综合软件系统设计的方法,该方法满足严格的质量要求,在一组质量优化标准方面是帕累托最优的,并且对系统参数的变化具有鲁棒性。为此,我们将正在开发的系统的设计空间建模为具有离散和连续参数的参数化连续马尔可夫链(pCTMC),这些参数分别对应于可选的系统架构和配置参数的可能值范围。考虑到这个pCTMC和配置参数所需的公差水平,我们的方法产生了一个敏感的帕累托最优设计集,它允许建模者检查由这些公差引起的质量属性的范围,从而能够有效地选择稳健设计。通过对来自不同领域的两个系统的应用,我们证明了我们的方法能够在质量属性和灵敏度之间进行广泛的有用权衡来综合稳健设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Robust Software Systems through Parametric Markov Chain Synthesis
We present a method for the synthesis of software system designs that satisfy strict quality requirements, are Pareto-optimal with respect to a set of quality optimisation criteria, and are robust to variations in the system parameters. To this end, we model the design space of the system under development as a parametric continuous-time Markov chain (pCTMC) with discrete and continuous parameters that correspond to alternative system architectures and to the ranges of possible values for configuration parameters, respectively. Given this pCTMC and required tolerance levels for the configuration parameters, our method produces a sensitivity-aware Pareto-optimal set of designs, which allows the modeller to inspect the ranges of quality attributes induced by these tolerances, thus enabling the effective selection of robust designs. Through application to two systems from different domains, we demonstrate the ability of our method to synthesise robust designs with a wide spectrum of useful tradeoffs between quality attributes and sensitivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信