一种128/spl倍/128超声换能器混合阵列

K. Erikson, A. Hairston, A. Nicoli, J. Stockwell, T. White
{"title":"一种128/spl倍/128超声换能器混合阵列","authors":"K. Erikson, A. Hairston, A. Nicoli, J. Stockwell, T. White","doi":"10.1109/ULTSYM.1997.663306","DOIUrl":null,"url":null,"abstract":"Ultrasonic imaging in the low MHz frequency range with large, dense arrays presents many design and fabrication challenges. Conventional ultrasound systems use micro-coaxial cable to connect the array to the front end electronics. While coax technology has improved dramatically in the past decade, interconnecting 16384 array elements with separate wires remains a formidable challenge. In addition to this practical issue, the capacitance of a long coaxial cable (/spl sim/40 pF/m) is much larger than that of a typical 2D array element (<1 pF), creating a voltage divider that severely reduces the signal-to-noise ratio of the channel. A 2D composite piezoelectric receiver array bonded directly to four large custom integrated circuits is described. This 128/spl times/128 (16384 total) element Transducer Hybrid Array (THA) of 200 /spl mu/m unit cell spacing is intended for a 3D real-time imaging system for medical and underwater applications. By reducing the interconnect length to less than 20 /spl mu/m, cable capacitance is no longer a problem. Massively parallel, on-chip signal processing enables true real-time three-dimensional imaging. Favorable tradeoffs using composite piezoelectric materials, enabled by this high-density flip-chip interconnection technology are discussed.","PeriodicalId":6369,"journal":{"name":"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)","volume":"115 1","pages":"1625-1629 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A 128/spl times/128 ultrasonic transducer hybrid array\",\"authors\":\"K. Erikson, A. Hairston, A. Nicoli, J. Stockwell, T. White\",\"doi\":\"10.1109/ULTSYM.1997.663306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasonic imaging in the low MHz frequency range with large, dense arrays presents many design and fabrication challenges. Conventional ultrasound systems use micro-coaxial cable to connect the array to the front end electronics. While coax technology has improved dramatically in the past decade, interconnecting 16384 array elements with separate wires remains a formidable challenge. In addition to this practical issue, the capacitance of a long coaxial cable (/spl sim/40 pF/m) is much larger than that of a typical 2D array element (<1 pF), creating a voltage divider that severely reduces the signal-to-noise ratio of the channel. A 2D composite piezoelectric receiver array bonded directly to four large custom integrated circuits is described. This 128/spl times/128 (16384 total) element Transducer Hybrid Array (THA) of 200 /spl mu/m unit cell spacing is intended for a 3D real-time imaging system for medical and underwater applications. By reducing the interconnect length to less than 20 /spl mu/m, cable capacitance is no longer a problem. Massively parallel, on-chip signal processing enables true real-time three-dimensional imaging. Favorable tradeoffs using composite piezoelectric materials, enabled by this high-density flip-chip interconnection technology are discussed.\",\"PeriodicalId\":6369,\"journal\":{\"name\":\"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)\",\"volume\":\"115 1\",\"pages\":\"1625-1629 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.1997.663306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.1997.663306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在低MHz频率范围内,大型密集阵列的超声成像提出了许多设计和制造方面的挑战。传统的超声系统使用微型同轴电缆将阵列连接到前端电子设备。虽然在过去的十年里,同轴电缆技术有了很大的进步,但将16384个阵列元素与单独的电线互连仍然是一个艰巨的挑战。除了这个实际问题之外,长同轴电缆的电容(/spl sim/40 pF/m)比典型的2D阵列元件(<1 pF)大得多,产生的分压器严重降低了通道的信噪比。描述了一种直接连接到四个大型定制集成电路的二维复合压电接收器阵列。这种128/spl倍/128(共16384)单元传感器混合阵列(THA)的200 /spl mu/m单元间距用于医疗和水下应用的3D实时成像系统。通过将互连长度减少到20 /spl mu/m以下,电缆电容不再是问题。大规模并行,芯片上的信号处理实现真正的实时三维成像。讨论了高密度倒装芯片互连技术所带来的复合压电材料的有利权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 128/spl times/128 ultrasonic transducer hybrid array
Ultrasonic imaging in the low MHz frequency range with large, dense arrays presents many design and fabrication challenges. Conventional ultrasound systems use micro-coaxial cable to connect the array to the front end electronics. While coax technology has improved dramatically in the past decade, interconnecting 16384 array elements with separate wires remains a formidable challenge. In addition to this practical issue, the capacitance of a long coaxial cable (/spl sim/40 pF/m) is much larger than that of a typical 2D array element (<1 pF), creating a voltage divider that severely reduces the signal-to-noise ratio of the channel. A 2D composite piezoelectric receiver array bonded directly to four large custom integrated circuits is described. This 128/spl times/128 (16384 total) element Transducer Hybrid Array (THA) of 200 /spl mu/m unit cell spacing is intended for a 3D real-time imaging system for medical and underwater applications. By reducing the interconnect length to less than 20 /spl mu/m, cable capacitance is no longer a problem. Massively parallel, on-chip signal processing enables true real-time three-dimensional imaging. Favorable tradeoffs using composite piezoelectric materials, enabled by this high-density flip-chip interconnection technology are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信