双曲型守恒律的一维有限体积新方法

J. Pedro, M. Banda, P. Sibanda
{"title":"双曲型守恒律的一维有限体积新方法","authors":"J. Pedro, M. Banda, P. Sibanda","doi":"10.4172/2168-9679.1000456","DOIUrl":null,"url":null,"abstract":"In this paper, a new one-dimensional Finite Volume Method for Hyperbolic Conservation Laws is presented. The method consists in an improved numerical inter-cell flux function at the element interface. To back theoretically the method, necessary components for convergence are presented. Therefore, it is proved that the method is consistent with the P.D.E and that it is monotone with respect its variables. Moreover, to validate the approach and show its efficiency, we compute several one-dimensional test problems with discontinuous solutions and we make comparisons with traditional methods. The results show an improvement on the non-oscillatory shock-capturing properties based on the new approach.","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"5 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New One-Dimensional Finite Volume Method for Hyperbolic Conservation Laws\",\"authors\":\"J. Pedro, M. Banda, P. Sibanda\",\"doi\":\"10.4172/2168-9679.1000456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new one-dimensional Finite Volume Method for Hyperbolic Conservation Laws is presented. The method consists in an improved numerical inter-cell flux function at the element interface. To back theoretically the method, necessary components for convergence are presented. Therefore, it is proved that the method is consistent with the P.D.E and that it is monotone with respect its variables. Moreover, to validate the approach and show its efficiency, we compute several one-dimensional test problems with discontinuous solutions and we make comparisons with traditional methods. The results show an improvement on the non-oscillatory shock-capturing properties based on the new approach.\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"5 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9679.1000456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了求解双曲守恒律的一种新的一维有限体积法。该方法包括在单元界面处改进的数值胞间通量函数。为了从理论上支持该方法,给出了收敛的必要分量。因此,证明了该方法与P.D.E是一致的,并且对于其变量是单调的。此外,为了验证该方法的有效性,我们计算了几个具有不连续解的一维测试问题,并与传统方法进行了比较。结果表明,基于新方法的非振荡冲击捕获性能得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New One-Dimensional Finite Volume Method for Hyperbolic Conservation Laws
In this paper, a new one-dimensional Finite Volume Method for Hyperbolic Conservation Laws is presented. The method consists in an improved numerical inter-cell flux function at the element interface. To back theoretically the method, necessary components for convergence are presented. Therefore, it is proved that the method is consistent with the P.D.E and that it is monotone with respect its variables. Moreover, to validate the approach and show its efficiency, we compute several one-dimensional test problems with discontinuous solutions and we make comparisons with traditional methods. The results show an improvement on the non-oscillatory shock-capturing properties based on the new approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信