{"title":"使用Chebyshev级数和区域分解的ode的严格数值","authors":"J. B. van den Berg, Ray Sheombarsing","doi":"10.3934/jcd.2021015","DOIUrl":null,"url":null,"abstract":"In this paper we present a rigorous numerical method for validating analytic solutions of nonlinear ODEs by using Chebyshev-series and domain decomposition. The idea is to define a Newton-like operator, whose fixed points correspond to solutions of the ODE, on the space of geometrically decaying Chebyshev coefficients, and to use the so-called radii-polynomial approach to prove that the operator has an isolated fixed point in a small neighborhood of a numerical approximation. The novelty of the proposed method is the use of Chebyshev series in combination with domain decomposition. In particular, a heuristic procedure based on the theory of Chebyshev approximations for analytic functions is presented to construct efficient grids for validating solutions of boundary value problems. The effectiveness of the proposed method is demonstrated by validating long periodic and connecting orbits in the Lorenz system for which validation without domain decomposition is not feasible.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"109 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Rigorous numerics for ODEs using Chebyshev series and domain decomposition\",\"authors\":\"J. B. van den Berg, Ray Sheombarsing\",\"doi\":\"10.3934/jcd.2021015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a rigorous numerical method for validating analytic solutions of nonlinear ODEs by using Chebyshev-series and domain decomposition. The idea is to define a Newton-like operator, whose fixed points correspond to solutions of the ODE, on the space of geometrically decaying Chebyshev coefficients, and to use the so-called radii-polynomial approach to prove that the operator has an isolated fixed point in a small neighborhood of a numerical approximation. The novelty of the proposed method is the use of Chebyshev series in combination with domain decomposition. In particular, a heuristic procedure based on the theory of Chebyshev approximations for analytic functions is presented to construct efficient grids for validating solutions of boundary value problems. The effectiveness of the proposed method is demonstrated by validating long periodic and connecting orbits in the Lorenz system for which validation without domain decomposition is not feasible.\",\"PeriodicalId\":37526,\"journal\":{\"name\":\"Journal of Computational Dynamics\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jcd.2021015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2021015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Rigorous numerics for ODEs using Chebyshev series and domain decomposition
In this paper we present a rigorous numerical method for validating analytic solutions of nonlinear ODEs by using Chebyshev-series and domain decomposition. The idea is to define a Newton-like operator, whose fixed points correspond to solutions of the ODE, on the space of geometrically decaying Chebyshev coefficients, and to use the so-called radii-polynomial approach to prove that the operator has an isolated fixed point in a small neighborhood of a numerical approximation. The novelty of the proposed method is the use of Chebyshev series in combination with domain decomposition. In particular, a heuristic procedure based on the theory of Chebyshev approximations for analytic functions is presented to construct efficient grids for validating solutions of boundary value problems. The effectiveness of the proposed method is demonstrated by validating long periodic and connecting orbits in the Lorenz system for which validation without domain decomposition is not feasible.
期刊介绍:
JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.