利用人工神经网络(ANN)预测红叶水分比

IF 0.4 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Uwem Ekwere Inyang, Victor James Bassey
{"title":"利用人工神经网络(ANN)预测红叶水分比","authors":"Uwem Ekwere Inyang, Victor James Bassey","doi":"10.14419/ijet.v10i2.31809","DOIUrl":null,"url":null,"abstract":"In this work, an artificial neural network (ANN) model was used to predict the moisture ratio of atama (Heinsia crinita) dried under different drying temperatures of 40 0C, 50 0C, 60 0C, and 70 0C using a laboratory dry oven. The experimental data collected (140 data points in all) which was partitioned into three sets: training (70%), validation (15%), and testing (15%) were modeled using artificial neural network (ANN), an Artificial Intelligence approach. The ANN model architecture of ANN (3 – 4 - 1) used in this work was selected by trial-and-error approach. The input layer had three (3) inputs (drying rate, temperature, time), the hidden layer had four (4) neurons, and the output layer had one (1) output (moisture ratio). Levenberg-Marquardt (LM) algorithm was used for training the network, and TANSIG and Purelin transfer/activation functions were used for the hidden layer and output layer, respectively. The model had a learning rate of 0.7, and the number of epochs was set at 1000. The results obtained showed that the ANN methodology could precisely predict experimental data with high correlation coefficient (R-Squared) value of 0.9995 – 0.9977 and low mean square error (RMSE) of 0.00052568, as the artificial neural network model more accurately predict the drying parameter (moisture ratio). The sensitivity analysis performed shows that temperature has the greatest impact on the moisture ratio of atama. From the finding, the ANN technology which is embedded in the neural toolbox of MATLAB mathematical software is indeed a tool of choice when it comes to the prediction of parameters of non-linear and complex processes like drying. The unique modelling technique and the model it evolved represent a huge step in the trajectory of achieving full automation of moisture ratio estimation which will increase the utilization of atama as well as other vegetables to curb the unending events of food spoilage currently plaguing the global food and agriculture industry.   ","PeriodicalId":40905,"journal":{"name":"EMITTER-International Journal of Engineering Technology","volume":"8 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the moisture ratio of Atama (Heinsia Crinita) leaves using artificial neural network (ANN)\",\"authors\":\"Uwem Ekwere Inyang, Victor James Bassey\",\"doi\":\"10.14419/ijet.v10i2.31809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an artificial neural network (ANN) model was used to predict the moisture ratio of atama (Heinsia crinita) dried under different drying temperatures of 40 0C, 50 0C, 60 0C, and 70 0C using a laboratory dry oven. The experimental data collected (140 data points in all) which was partitioned into three sets: training (70%), validation (15%), and testing (15%) were modeled using artificial neural network (ANN), an Artificial Intelligence approach. The ANN model architecture of ANN (3 – 4 - 1) used in this work was selected by trial-and-error approach. The input layer had three (3) inputs (drying rate, temperature, time), the hidden layer had four (4) neurons, and the output layer had one (1) output (moisture ratio). Levenberg-Marquardt (LM) algorithm was used for training the network, and TANSIG and Purelin transfer/activation functions were used for the hidden layer and output layer, respectively. The model had a learning rate of 0.7, and the number of epochs was set at 1000. The results obtained showed that the ANN methodology could precisely predict experimental data with high correlation coefficient (R-Squared) value of 0.9995 – 0.9977 and low mean square error (RMSE) of 0.00052568, as the artificial neural network model more accurately predict the drying parameter (moisture ratio). The sensitivity analysis performed shows that temperature has the greatest impact on the moisture ratio of atama. From the finding, the ANN technology which is embedded in the neural toolbox of MATLAB mathematical software is indeed a tool of choice when it comes to the prediction of parameters of non-linear and complex processes like drying. The unique modelling technique and the model it evolved represent a huge step in the trajectory of achieving full automation of moisture ratio estimation which will increase the utilization of atama as well as other vegetables to curb the unending events of food spoilage currently plaguing the global food and agriculture industry.   \",\"PeriodicalId\":40905,\"journal\":{\"name\":\"EMITTER-International Journal of Engineering Technology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMITTER-International Journal of Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/ijet.v10i2.31809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMITTER-International Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/ijet.v10i2.31809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文采用人工神经网络(ANN)模型,在实验室干燥箱上对40℃、50℃、60℃、70℃不同干燥温度下的红枣(Heinsia crinita)水分比进行预测。收集的实验数据(总共140个数据点)分为三组:训练(70%),验证(15%)和测试(15%),使用人工智能方法人工神经网络(ANN)建模。本文采用试错法选择了ANN(3 - 4 - 1)模型架构。输入层有3个输入(干燥速率、温度、时间),隐藏层有4个神经元,输出层有1个输出(湿度比)。使用Levenberg-Marquardt (LM)算法对网络进行训练,隐藏层和输出层分别使用TANSIG和Purelin传递/激活函数。模型的学习率为0.7,epoch数设为1000。结果表明,人工神经网络模型对干燥参数(含水率)的预测更为准确,相关系数(R-Squared)为0.9995 ~ 0.9977,均方误差(RMSE)为0.00052568。敏感性分析表明,温度对水肥含水率的影响最大。从研究结果来看,嵌入在MATLAB数学软件神经工具箱中的人工神经网络技术确实是预测干燥等非线性复杂过程参数的首选工具。独特的建模技术及其发展的模型代表了实现水分比估算完全自动化的一大步,这将提高阿塔玛和其他蔬菜的利用率,以遏制目前困扰全球食品和农业工业的无休止的食品腐败事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of the moisture ratio of Atama (Heinsia Crinita) leaves using artificial neural network (ANN)
In this work, an artificial neural network (ANN) model was used to predict the moisture ratio of atama (Heinsia crinita) dried under different drying temperatures of 40 0C, 50 0C, 60 0C, and 70 0C using a laboratory dry oven. The experimental data collected (140 data points in all) which was partitioned into three sets: training (70%), validation (15%), and testing (15%) were modeled using artificial neural network (ANN), an Artificial Intelligence approach. The ANN model architecture of ANN (3 – 4 - 1) used in this work was selected by trial-and-error approach. The input layer had three (3) inputs (drying rate, temperature, time), the hidden layer had four (4) neurons, and the output layer had one (1) output (moisture ratio). Levenberg-Marquardt (LM) algorithm was used for training the network, and TANSIG and Purelin transfer/activation functions were used for the hidden layer and output layer, respectively. The model had a learning rate of 0.7, and the number of epochs was set at 1000. The results obtained showed that the ANN methodology could precisely predict experimental data with high correlation coefficient (R-Squared) value of 0.9995 – 0.9977 and low mean square error (RMSE) of 0.00052568, as the artificial neural network model more accurately predict the drying parameter (moisture ratio). The sensitivity analysis performed shows that temperature has the greatest impact on the moisture ratio of atama. From the finding, the ANN technology which is embedded in the neural toolbox of MATLAB mathematical software is indeed a tool of choice when it comes to the prediction of parameters of non-linear and complex processes like drying. The unique modelling technique and the model it evolved represent a huge step in the trajectory of achieving full automation of moisture ratio estimation which will increase the utilization of atama as well as other vegetables to curb the unending events of food spoilage currently plaguing the global food and agriculture industry.   
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMITTER-International Journal of Engineering Technology
EMITTER-International Journal of Engineering Technology ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信