具有少量不可约因子的函数域上的随机乘法函数和

IF 0.6 3区 数学 Q3 MATHEMATICS
Daksh Aggarwal, Unique Subedi, William Verreault, Asif Zaman, Chenghui Zheng
{"title":"具有少量不可约因子的函数域上的随机乘法函数和","authors":"Daksh Aggarwal, Unique Subedi, William Verreault, Asif Zaman, Chenghui Zheng","doi":"10.1017/S030500412200010X","DOIUrl":null,"url":null,"abstract":"Abstract We establish a normal approximation for the limiting distribution of partial sums of random Rademacher multiplicative functions over function fields, provided the number of irreducible factors of the polynomials is small enough. This parallels work of Harper for random Rademacher multiplicative functions over the integers.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"111 1","pages":"715 - 726"},"PeriodicalIF":0.6000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sums of random multiplicative functions over function fields with few irreducible factors\",\"authors\":\"Daksh Aggarwal, Unique Subedi, William Verreault, Asif Zaman, Chenghui Zheng\",\"doi\":\"10.1017/S030500412200010X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish a normal approximation for the limiting distribution of partial sums of random Rademacher multiplicative functions over function fields, provided the number of irreducible factors of the polynomials is small enough. This parallels work of Harper for random Rademacher multiplicative functions over the integers.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"111 1\",\"pages\":\"715 - 726\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S030500412200010X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S030500412200010X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在多项式的不可约因子足够小的条件下,建立了随机Rademacher乘法函数部分和在函数域上的极限分布的正态逼近。这与Harper在整数上的随机Rademacher乘法函数的工作相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sums of random multiplicative functions over function fields with few irreducible factors
Abstract We establish a normal approximation for the limiting distribution of partial sums of random Rademacher multiplicative functions over function fields, provided the number of irreducible factors of the polynomials is small enough. This parallels work of Harper for random Rademacher multiplicative functions over the integers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信