Daksh Aggarwal, Unique Subedi, William Verreault, Asif Zaman, Chenghui Zheng
{"title":"具有少量不可约因子的函数域上的随机乘法函数和","authors":"Daksh Aggarwal, Unique Subedi, William Verreault, Asif Zaman, Chenghui Zheng","doi":"10.1017/S030500412200010X","DOIUrl":null,"url":null,"abstract":"Abstract We establish a normal approximation for the limiting distribution of partial sums of random Rademacher multiplicative functions over function fields, provided the number of irreducible factors of the polynomials is small enough. This parallels work of Harper for random Rademacher multiplicative functions over the integers.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"111 1","pages":"715 - 726"},"PeriodicalIF":0.6000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sums of random multiplicative functions over function fields with few irreducible factors\",\"authors\":\"Daksh Aggarwal, Unique Subedi, William Verreault, Asif Zaman, Chenghui Zheng\",\"doi\":\"10.1017/S030500412200010X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish a normal approximation for the limiting distribution of partial sums of random Rademacher multiplicative functions over function fields, provided the number of irreducible factors of the polynomials is small enough. This parallels work of Harper for random Rademacher multiplicative functions over the integers.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"111 1\",\"pages\":\"715 - 726\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S030500412200010X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S030500412200010X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sums of random multiplicative functions over function fields with few irreducible factors
Abstract We establish a normal approximation for the limiting distribution of partial sums of random Rademacher multiplicative functions over function fields, provided the number of irreducible factors of the polynomials is small enough. This parallels work of Harper for random Rademacher multiplicative functions over the integers.
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.