四球中的横向不变量和奇异曲面

IF 2 1区 数学
Andr'as Juh'asz, Maggie Miller, Ian Zemke
{"title":"四球中的横向不变量和奇异曲面","authors":"Andr'as Juh'asz, Maggie Miller, Ian Zemke","doi":"10.2140/gt.2021.25.2963","DOIUrl":null,"url":null,"abstract":"Using 1-twist rim surgery, we construct infinitely many smoothly embedded, orientable surfaces in the 4-ball bounding a knot in the 3-sphere that are pairwise topologically isotopic, but not ambient diffeomorphic. We distinguish the surfaces using the maps they induce on perturbed sutured Floer homology. Along the way, we show that the cobordism map induced by an ascending surface in a Weinstein cobordism preserves the transverse invariant in knot Floer homology.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"88 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Transverse invariants and exotic surfaces in the\\n4–ball\",\"authors\":\"Andr'as Juh'asz, Maggie Miller, Ian Zemke\",\"doi\":\"10.2140/gt.2021.25.2963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using 1-twist rim surgery, we construct infinitely many smoothly embedded, orientable surfaces in the 4-ball bounding a knot in the 3-sphere that are pairwise topologically isotopic, but not ambient diffeomorphic. We distinguish the surfaces using the maps they induce on perturbed sutured Floer homology. Along the way, we show that the cobordism map induced by an ascending surface in a Weinstein cobordism preserves the transverse invariant in knot Floer homology.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.2963\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.2963","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

利用1-扭转边缘手术,我们构造了无限多个平滑嵌入的可定向表面,这些表面在3球中有一个结,它们是成对拓扑同位素的,但不是环境微分同构的。我们利用它们在微扰缝合线花同源上诱导的映射来区分曲面。在此过程中,我们证明了韦恩斯坦协协中由上升曲面诱导的协协映射保留了结花同调中的横向不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transverse invariants and exotic surfaces in the 4–ball
Using 1-twist rim surgery, we construct infinitely many smoothly embedded, orientable surfaces in the 4-ball bounding a knot in the 3-sphere that are pairwise topologically isotopic, but not ambient diffeomorphic. We distinguish the surfaces using the maps they induce on perturbed sutured Floer homology. Along the way, we show that the cobordism map induced by an ascending surface in a Weinstein cobordism preserves the transverse invariant in knot Floer homology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信