{"title":"大西洋黑人传统中的固定音:一般-特定的相似性和接近性","authors":"J. Rahn","doi":"10.1080/17459737.2022.2071491","DOIUrl":null,"url":null,"abstract":"Ostinatos of sub-Saharan Africa, South America, and the Caribbean are continually repeated rhythms also known as “timelines.” Taking as a starting point the ostinato termed the “Standard Pattern,” generic and specific features of Black-Atlantic ostinatos are analyzed: in European-derived theory, these features correspond to the quantity and quality of musical intervals. Like the standard pattern, other ostinatos that have been employed in several Black-Atlantic traditions and comprise a rhythmic structure that corresponds to the structure of hyperdiatonic scales in contemporary European-derived pitch theory; other widespread ostinatos considered have a complementary, hyperpentatonic structure. Interpreted in terms of Gestalt grouping principles, both of these kinds of ostinatos maximize similarity and proximity. Other ostinatos of these traditions can be construed as variants of hyperdiatonic or hyperpentatonic ostinatos. Differences of similarity and proximity that these variants manifest are analyzed in terms of adjacent swaps, fusions and fissions, and moduli that encompass two or more ostinatos’ least common multiples. In turn, similarity and proximity measures for rhythmic ostinatos are shown to parsimoniously clarify aspects of pitch relations, including the general notion of evenness, within 1- dimensional frameworks for pitch and time.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ostinatos in Black-Atlantic traditions: generic-specific similarity and proximity\",\"authors\":\"J. Rahn\",\"doi\":\"10.1080/17459737.2022.2071491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ostinatos of sub-Saharan Africa, South America, and the Caribbean are continually repeated rhythms also known as “timelines.” Taking as a starting point the ostinato termed the “Standard Pattern,” generic and specific features of Black-Atlantic ostinatos are analyzed: in European-derived theory, these features correspond to the quantity and quality of musical intervals. Like the standard pattern, other ostinatos that have been employed in several Black-Atlantic traditions and comprise a rhythmic structure that corresponds to the structure of hyperdiatonic scales in contemporary European-derived pitch theory; other widespread ostinatos considered have a complementary, hyperpentatonic structure. Interpreted in terms of Gestalt grouping principles, both of these kinds of ostinatos maximize similarity and proximity. Other ostinatos of these traditions can be construed as variants of hyperdiatonic or hyperpentatonic ostinatos. Differences of similarity and proximity that these variants manifest are analyzed in terms of adjacent swaps, fusions and fissions, and moduli that encompass two or more ostinatos’ least common multiples. In turn, similarity and proximity measures for rhythmic ostinatos are shown to parsimoniously clarify aspects of pitch relations, including the general notion of evenness, within 1- dimensional frameworks for pitch and time.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2022.2071491\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2022.2071491","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Ostinatos in Black-Atlantic traditions: generic-specific similarity and proximity
Ostinatos of sub-Saharan Africa, South America, and the Caribbean are continually repeated rhythms also known as “timelines.” Taking as a starting point the ostinato termed the “Standard Pattern,” generic and specific features of Black-Atlantic ostinatos are analyzed: in European-derived theory, these features correspond to the quantity and quality of musical intervals. Like the standard pattern, other ostinatos that have been employed in several Black-Atlantic traditions and comprise a rhythmic structure that corresponds to the structure of hyperdiatonic scales in contemporary European-derived pitch theory; other widespread ostinatos considered have a complementary, hyperpentatonic structure. Interpreted in terms of Gestalt grouping principles, both of these kinds of ostinatos maximize similarity and proximity. Other ostinatos of these traditions can be construed as variants of hyperdiatonic or hyperpentatonic ostinatos. Differences of similarity and proximity that these variants manifest are analyzed in terms of adjacent swaps, fusions and fissions, and moduli that encompass two or more ostinatos’ least common multiples. In turn, similarity and proximity measures for rhythmic ostinatos are shown to parsimoniously clarify aspects of pitch relations, including the general notion of evenness, within 1- dimensional frameworks for pitch and time.
期刊介绍:
Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.