多周期心脏MRI对室间隔运动的探讨

L. Tautz, M. Hüllebrand, M. Steinmetz, Dirk Voit, J. Frahm, A. Hennemuth
{"title":"多周期心脏MRI对室间隔运动的探讨","authors":"L. Tautz, M. Hüllebrand, M. Steinmetz, Dirk Voit, J. Frahm, A. Hennemuth","doi":"10.2312/vcbm.20171251","DOIUrl":null,"url":null,"abstract":"Function of the heart, including interventricular septum motion, is influenced by respiration and contraction of the heart muscle. Recent real-time magnetic resonance imaging (MRI) can acquire multi-cycle cardiac data, which enables the analysis of the variation between heart cycles depending on factors such as physical stress or changes in respiration. There are no normal values for this variation in the literature, and there are no established tools for the analysis and exploration of such multi-cycle data available. We propose an analysis and exploration concept that automatically segments the left and right ventricle, extracts motion parameters and allows to interactively explore the results. We tested the concept using nine real-time MRI data sets, including one subject under increasing stress levels and one subject performing a breathing maneuver. All data sets could be automatically processed and then explored successfully, suggesting that our approach can robustly quantify and explore septum thickness in real-time MRI data. CCS Concepts •Human-centered computing → Visual analytics; •Computing methodologies → Image segmentation;","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"2 1","pages":"169-178"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploration of Interventricular Septum Motion in Multi-Cycle Cardiac MRI\",\"authors\":\"L. Tautz, M. Hüllebrand, M. Steinmetz, Dirk Voit, J. Frahm, A. Hennemuth\",\"doi\":\"10.2312/vcbm.20171251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Function of the heart, including interventricular septum motion, is influenced by respiration and contraction of the heart muscle. Recent real-time magnetic resonance imaging (MRI) can acquire multi-cycle cardiac data, which enables the analysis of the variation between heart cycles depending on factors such as physical stress or changes in respiration. There are no normal values for this variation in the literature, and there are no established tools for the analysis and exploration of such multi-cycle data available. We propose an analysis and exploration concept that automatically segments the left and right ventricle, extracts motion parameters and allows to interactively explore the results. We tested the concept using nine real-time MRI data sets, including one subject under increasing stress levels and one subject performing a breathing maneuver. All data sets could be automatically processed and then explored successfully, suggesting that our approach can robustly quantify and explore septum thickness in real-time MRI data. CCS Concepts •Human-centered computing → Visual analytics; •Computing methodologies → Image segmentation;\",\"PeriodicalId\":88872,\"journal\":{\"name\":\"Eurographics Workshop on Visual Computing for Biomedicine\",\"volume\":\"2 1\",\"pages\":\"169-178\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Workshop on Visual Computing for Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/vcbm.20171251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20171251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

心脏的功能,包括室间隔运动,受呼吸和心肌收缩的影响。最近的实时磁共振成像(MRI)可以获得多周期心脏数据,这使得能够根据诸如身体压力或呼吸变化等因素分析心脏周期之间的变化。在文献中没有这种变化的正常值,也没有现成的工具来分析和探索这种多周期数据。我们提出了一种自动分割左右心室,提取运动参数并允许交互式探索结果的分析和探索概念。我们使用9个实时MRI数据集测试了这一概念,其中包括一个处于不断增加的压力水平的受试者和一个进行呼吸操作的受试者。所有数据集都可以自动处理并成功探索,表明我们的方法可以在实时MRI数据中稳健地量化和探索隔层厚度。CCS概念•以人为中心的计算→可视化分析;•计算方法→图像分割;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploration of Interventricular Septum Motion in Multi-Cycle Cardiac MRI
Function of the heart, including interventricular septum motion, is influenced by respiration and contraction of the heart muscle. Recent real-time magnetic resonance imaging (MRI) can acquire multi-cycle cardiac data, which enables the analysis of the variation between heart cycles depending on factors such as physical stress or changes in respiration. There are no normal values for this variation in the literature, and there are no established tools for the analysis and exploration of such multi-cycle data available. We propose an analysis and exploration concept that automatically segments the left and right ventricle, extracts motion parameters and allows to interactively explore the results. We tested the concept using nine real-time MRI data sets, including one subject under increasing stress levels and one subject performing a breathing maneuver. All data sets could be automatically processed and then explored successfully, suggesting that our approach can robustly quantify and explore septum thickness in real-time MRI data. CCS Concepts •Human-centered computing → Visual analytics; •Computing methodologies → Image segmentation;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信