基于输出变量的最小程序覆盖

Habib M. Ammari, A. Jaoua
{"title":"基于输出变量的最小程序覆盖","authors":"Habib M. Ammari, A. Jaoua","doi":"10.1109/SCAC.1995.523679","DOIUrl":null,"url":null,"abstract":"This paper discusses how a program can be represented by a binary relation, R, and how to decompose the latter into a set of rectangular relations. Next, we present our methodology based on relational operators and dependence relations, to show how we can use these rectangles to obtain more interesting ones that describe the entire behavior of every variable in the program. The notion of lattice of maximal rectangles is effective in that it permits to have a particular representation of the program which shows all the different parts that constitute the original program. By looking at this lattice structure, we find that the set of the leaves of this lattice, which represent \"pertinent\" rectangles associated to output variables, gives a minimal program covering.","PeriodicalId":90699,"journal":{"name":"Proceedings. IEEE Symposium on Computers and Communications","volume":"70 1","pages":"282-288"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Minimal program covering based on the output variables\",\"authors\":\"Habib M. Ammari, A. Jaoua\",\"doi\":\"10.1109/SCAC.1995.523679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses how a program can be represented by a binary relation, R, and how to decompose the latter into a set of rectangular relations. Next, we present our methodology based on relational operators and dependence relations, to show how we can use these rectangles to obtain more interesting ones that describe the entire behavior of every variable in the program. The notion of lattice of maximal rectangles is effective in that it permits to have a particular representation of the program which shows all the different parts that constitute the original program. By looking at this lattice structure, we find that the set of the leaves of this lattice, which represent \\\"pertinent\\\" rectangles associated to output variables, gives a minimal program covering.\",\"PeriodicalId\":90699,\"journal\":{\"name\":\"Proceedings. IEEE Symposium on Computers and Communications\",\"volume\":\"70 1\",\"pages\":\"282-288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Symposium on Computers and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCAC.1995.523679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Symposium on Computers and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCAC.1995.523679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了如何用一个二元关系R来表示一个程序,以及如何将后者分解成一组矩形关系。接下来,我们将介绍基于关系运算符和依赖关系的方法,以展示如何使用这些矩形来获得描述程序中每个变量的整个行为的更有趣的矩形。最大矩形晶格的概念是有效的,因为它允许有一个特定的程序表示,它显示了构成原始程序的所有不同部分。通过观察这个点阵结构,我们发现这个点阵的叶子(表示与输出变量相关的“相关”矩形)的集合给出了一个最小的程序覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal program covering based on the output variables
This paper discusses how a program can be represented by a binary relation, R, and how to decompose the latter into a set of rectangular relations. Next, we present our methodology based on relational operators and dependence relations, to show how we can use these rectangles to obtain more interesting ones that describe the entire behavior of every variable in the program. The notion of lattice of maximal rectangles is effective in that it permits to have a particular representation of the program which shows all the different parts that constitute the original program. By looking at this lattice structure, we find that the set of the leaves of this lattice, which represent "pertinent" rectangles associated to output variables, gives a minimal program covering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信